Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T09:00:39.872Z Has data issue: false hasContentIssue false

High Pressure and Temperature Elasticity and EOS for Actinide Metals from First-Principles Simulations

Published online by Cambridge University Press:  04 June 2014

Christine J. Wu
Affiliation:
Condensed Matter and Materials Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
Per Söderlind
Affiliation:
Condensed Matter and Materials Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
Get access

Abstract

Density-functional theory (DFT) simulations are applied to obtain elastic, strength, and EOS properties of actinide metals under extreme conditions. In this presentation, we will show our recent study on temperature effects of the properties of solids of actinide metals. For example of low temperature uranium (U) solids, elastic constants are calculated directly from the DFT total energy for the ground-state phase in a wide pressure range. For higher temperature U solids, we are applying a recent scheme to calculate temperature-dependent phonon dispersions through the self-consistent ab initio lattice dynamics (SCAILD) technique. This scheme is particular important for the higher temperature phases that the elasticity cannot be analogously obtained because of its mechanical instability at lower temperatures. From these SCAILD phonon dispersions we then extract the elastic constants from the slopes approaching the Γ point. In addition, the phonon density of states of U obtained from SCAILD/DFT calculations have been used to parameterize a double Debye model for its ion-thermal free energy. We will discuss the ramification of this new Debye model on our development of multi-phase uranium EOS.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Söderlind, P., Kotliar, G., Haule, K., Oppeneer, P. M., and Guillaumont, D., MRS Bulletin 35, 883 (2010).CrossRefGoogle Scholar
Söderlind, P., Adv. Phys. 47, 959 (1998).CrossRefGoogle Scholar
Yoo, C. S., Cynn, H., and Söderlind, P., Phys. Rev. B 57, 10359 (1998).CrossRefGoogle Scholar
Crockett, S. D., Greeff, C. W., Wills, J. M. and Boettger, J. C., LANL document, LA-UR-1103682.Google Scholar
Söderlind, P., Eriksson, O., Johansson, B., and Wills, J. M., Phys. Rev. B 50, 7291 (1994); Söderlind, P. and Gonis, A., Phys. Rev. B 82, 033102(2010).CrossRefGoogle Scholar
Wills, J. M., Alouani, M., Andersson, P., Delin, A., Eriksson, O., and Grechnev, O., Full-Potential Electronic Structure Method (Springer-Verlag, Berlin, 2010).CrossRefGoogle Scholar
Söderlind, P., Phys. Rev. B 66, 085113 (2002).CrossRefGoogle Scholar
Souvatzis, P., Eriksson, O., Katsnelson, M. I., and Rudin, S. P., Phys. Rev. Lett. 100, 095901 (2008).CrossRefGoogle Scholar
Söderlind, P., Grabowski, B., Yang, L., Landa, A., Björkman, T., Souvatzis, P., and Eriksson, O., Phys. Rev. B 85, 060301(R) (2012).CrossRefGoogle Scholar
Bihan, Le, et al. ., Phys. Rev. B 67, 134102 (2003).CrossRefGoogle Scholar
Bouchet, J., Phys. Rev. B 77, 024113 (2008).CrossRefGoogle Scholar
Fisher, E. S. and McSkimin, H. J., J. Appl. Phys. 29, 1473 (1958).CrossRefGoogle Scholar
Manley, M. E., Fultz, B., McQueeney, R. J., Brown, C. M., Hults, W. L., Smith, J. L., Thoma, D. J., Osborn, R., and Robertson, J. L., Phys. Rev. Lett. 86, 3076 (2001).CrossRefGoogle Scholar
Correa, A. A., Benedict, L. X., Young, D. A. and Schwegler, E., Phys. Rev. B, 78, 024101 (2008)CrossRefGoogle Scholar
Wallace, D. C., Statistical Physics of Crystals and Liquids: A Guide to Highly Accurate Equations of State (World Scientific, Singapore, 2003).CrossRefGoogle Scholar