Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T17:20:24.900Z Has data issue: false hasContentIssue false

A High Performance Optically Gated Heterostructure Thyristor Passivated with LT-GaAs

Published online by Cambridge University Press:  15 February 2011

J. H. Zhao
Affiliation:
Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ 08855-0909
T. Burke
Affiliation:
Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ 08855-0909 U. S. Army LABCOM, ETD Laboratory, Fort Monmouth, NJ 07703.
D. Larson
Affiliation:
Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ 08855-0909
M. Weiner
Affiliation:
U. S. Army LABCOM, ETD Laboratory, Fort Monmouth, NJ 07703.
A. Chin
Affiliation:
GE Electronic Research Laboratory, Syracuse, NY 13221.
J. M. Ballingall
Affiliation:
GE Electronic Research Laboratory, Syracuse, NY 13221.
T.-H. Yu
Affiliation:
GE Electronic Research Laboratory, Syracuse, NY 13221.
Get access

Abstract

A high performance, Al0.3Ga0.7As/GaAs based, optically gated thyristor with a bulk semi-insulating(SI) GaAs 650 μm in thickness as the voltage blocking layer has been fabricated and characterized for high power pulsed switching applications. Low temperature(LT) GaAs was used to passivate the device surface and was found to greatly improve the switch hold-off voltage. The switched current as a function of bias up to 2,200 V (34 kV/cm) has been tested and the maximum switched current was 240 A with a di/dt equal to 2.02×1010 A/s. The forward dynamic current-voltage characteristics have been measured and the dissipated energy per switching determined. It was found that very sensitive triggering of the switch is possible, even with a light emitting diode operating in the sub-mW range, when the thyristor is reverse biased. The sensitive triggering is a result of the carrier tunneling through the reverse biased pn junctions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Alferov, Zh. I., Efanov, V. M., Zadiranov, Yu. M., Kardo-Sysoev, A. F., Korol'kov, V. I., Ponomarev, S. I., and Rozhkov, A. V., Soy. Tech. Phys. Lett., 12, 529(1986).Google Scholar
2.Belyaeva, O. A., Vainshtein, S. N., Zhilyaev, Yu. V., Levinshtein, M. E., and Chelnokov, V. E., Soy. Tech. Phys. Lett., 12, 383(1986).Google Scholar
3.Vainshtein, S. N., ZhilyaevYu, V. Yu, V., and Levinshtein, M. E., Soy. Phys. tech. Phys., 1, 788(1986).Google Scholar
4.Vainshtein, S. N., ZhilyaevYu, V. Yu, V., and Levinshtein, M. E., Soy. Phys. Semicond., 21, 77(1987).Google Scholar
5.Zadiranov, Yu. M., Korol'kov, V. I., Nikitin, V. G., Ponomarev, S. I., and Rozhkov, A. V., Soy. Tech. Phys. Lett., 9, 280(1983).Google Scholar
6.Zadiranov, Yu. M., Korol'kov, V. I., Ponomarev, S. I., and Tsvilev, C. I., Soy. Phys. Tech. Phys., 32, 466(1987).Google Scholar
7.Hur, J. H., Hadizad, P., Hummel, S. G., Dzurko, K. M., Dapkus, P. D., Fetterman, H. R., and Gundersen, M. A., IEEE Trans. Electron Devices, ED – 37 2520(1990).Google Scholar
8.Smith, F. W., Calawa, A. R., Chen, C.-L., Manfra, M. J., and Mahoney, L. J., IEEE Electron Device Lett., EDL – 9, 77(1988).Google Scholar
9.Yin, L.-W., Hwang, Y., Lee, J. H., Kolbas, R. M., Trew, R. J., and Mishra, U., IEEE Electron Device Lett., 11, 561(1990).Google Scholar
10.Chang, M. F., Lee, C. P., Hou, L. D., Vahrenkamp, R. P., and Kirkpatrick, C. G., Appl. Phys. Lett., 14, 869(1984).Google Scholar
11.Carson, R. F., Hughes, R. C., Weaver, H. T., and Keshavarez, A. A., Appl. Phys. Lett., 9, 834(1990).Google Scholar
12.Nilsson, S. L.(edlitor), Proc. of Light-firedh Thyristor Workshop, March, 1978, Palo Alto, CA, p. S-1.Google Scholar