Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T08:30:52.995Z Has data issue: false hasContentIssue false

High Integrity SiO2/Al2O3 Gate Stack for Normally-off GaN MOSFET

Published online by Cambridge University Press:  27 June 2013

Hiroshi Kambayashi
Affiliation:
Advanced Power Device Research Association, Yokohama 220-0073, Japan New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
Takehiko Nomura
Affiliation:
Advanced Power Device Research Association, Yokohama 220-0073, Japan
Hirokazu Ueda
Affiliation:
Tokyo Electron Technology Development Institute Inc., Sendai 981-3137, Japan
Katsushige Harada
Affiliation:
Tokyo Electron Tohoku Ltd., Nirasaki, Yamanashi 407-0192, Japan
Yuichiro Morozumi
Affiliation:
Tokyo Electron Ltd., Minato-ku, Tokyo 107-6325, Japan
Kazuhide Hasebe
Affiliation:
Tokyo Electron Tohoku Ltd., Nirasaki, Yamanashi 407-0192, Japan
Akinobu Teramoto
Affiliation:
New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
Shigetoshi Sugawa
Affiliation:
New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
Tadahiro Ohmi
Affiliation:
New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
Get access

Abstract

High integrity SiO2/Al2O3 gate stack has been demonstrated for GaN metal-oxide-semiconductor (MOS) transistors. The SiO2 film formed on GaN by the microwave-excited plasma enhanced chemical vapor deposition (MW-PECVD) exhibits good properties compared that by the LP (Low Pressure)-CVD. Then, by incorporating the advantages of both of SiO2 with a high insulating and Al2O3 with good interface characteristics, the SiO2/Al2O3 gate stack structure has been employed in GaN MOS devices. The structure shows a low interface state density between gate insulator and GaN, a high breakdown field, and a large charge-to-breakdown by applying 3-nm Al2O3. The SiO2/Al2O3 gate stack has also been applied to AlGaN/GaN hybrid MOS heterojunction field-effect transistor (HFET) and the HFET shows excellent properties with the threshold voltage of 4.2 V and the maximum field-effect mobility of 192 cm2/Vs.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Robertsona, J., and Falabretti, B., J. Appl. Phys. 100 014111 (2006).CrossRefGoogle Scholar
Ohmi, T., Hirayama, M. and Teramoto, A., J. Phys. D 39 R1 (2006).CrossRefGoogle Scholar
Kanechika, M., Sugimoto, M., Soejima, N., Ueda, H., Ishiguro, O., Kodama, M., Hayashi, E., Itoh, K., Uesugi, T., and Kachi, T., Jpn. J. Appl. Phys. 46 503 (2007).CrossRefGoogle Scholar
Kambayashi, H., Niiyama, Y., Ootomo, S., Nomura, T., Iwami, M., Satoh, Y., Kato, S., and Yoshida, S., IEEE Electron Device Lett. 28 1077 (2007).CrossRefGoogle Scholar
Kambayashi, H., Nomura, T., Kato, S., Ueda, H., Teramoto, A., Sugawa, S., and Ohmi, T., Jpn. J. Appl. Phys. 51 04DF03 (2012).CrossRefGoogle Scholar
Terman, L. M., Solid-State Electron. 5 285 (1962).CrossRefGoogle Scholar
Hashizume, T., and Hasegawa, H., Appl. Surf. Sci. 234 387 (2004).CrossRefGoogle Scholar
Kambayashi, H., Nomura, T., Ueda, H., Harada, Katsushige, Morozumi, Yuichiro, Hasebe, Kazuhide, Teramoto, A., Sugawa, S., and Ohmi, T., Jpn. J. Appl. Phys. 52, (2013) (in press).CrossRefGoogle Scholar