Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T18:32:07.724Z Has data issue: false hasContentIssue false

High Field Electrical Conductivity and Breakdown in Heteroepitaxial Diamond Films

Published online by Cambridge University Press:  10 February 2011

S. Schröppel
Affiliation:
Institut für Physik, Universität Augsburg, D-86135 Augsburg (Germany)
R. Hessmer
Affiliation:
Institut für Physik, Universität Augsburg, D-86135 Augsburg (Germany)
M. Schreck
Affiliation:
Institut für Physik, Universität Augsburg, D-86135 Augsburg (Germany)
B. Stritzker
Affiliation:
Institut für Physik, Universität Augsburg, D-86135 Augsburg (Germany)
Get access

Abstract

Nominally undoped, heteroepitaxially nucleated diamond films have been grown on Si(001). For different temperatures ranging between room temperature and 490°C the DCconductivity through the films has been measured for field strengths up to 600kV/cm. In the framework of the Poole-Frenkel theory a fit of the curves is possible for the model of isolated as well as for the model of overlapping coulombic potentials yielding an activation energy of 1.03eV.

In addition the breakdown voltage of the films has been measured as a function of the temperature. A drastic linear decrease with temperature is observed. Starting at a dielectric strength of about 1 MV/cm at room temperature the breakdown field decreases by an order of magnitude for 400°C. This observed behaviour is consistent with thermal breakdown based on Poole-Frenkel conduction in the pre-breakdown region.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shenai, K., Scott, R. S., and Baliga, B. J., in Amorphous and Crystalline Silicon Carbide and Related Materials II, edited by Rahman, M. M., Yang, C. Y. - W. and Harris, G. L. (Springer Proc. Physics 43, Springer, Berlin, 1989)Google Scholar
2. Johnson, E. O., RCA Review 26, 163 (1965).Google Scholar
3. Stoner, B. R., Glass, J. T., Bergman, L., Nemanich, R. J., Zoltal, L. D., and Vandersande, J. W., J. Electronic Mater. 21, 629 (1992).Google Scholar
4. Malta, D. M., Windheim, J. A. von, Wynands, H. A., and Fox, B. A., J. Appl Phys. 77, 1536 (1995)Google Scholar
5. Werner, M., Dorsch, O., Hinze, A., Obermeier, E., Harper, R. E., Johnston, C., Chalker, P. R., and Buckley-Golder, I. M., Diamond Relat. Mater. 2, 825 (1993).Google Scholar
6. Huang, Bohr-ran and Reinhard, D. K., Appl. Phys. Lett. 59, 1494 (1991).Google Scholar
7. Boettger, E., Jiang, X., and Klages, C.-P., Diamond Relat. Mater. 3, 957 (1994).Google Scholar
8. Hessmer, R., Schreck, M., Geier, S., and Stritzker, B., Diamond Relat. Mater. 3, 951 (1994).Google Scholar
9. Hessmer, R., Schreck, M., Geier, S., Rauschenbach, B., and Stritzker, B., Diamond Relat. Mater. 4, 410 (1995).Google Scholar
10. Muto, Y., Sugino, T., Shirafuji, J., and Kobashi, K., Appl. Phys. Lett. 59, 843 (1991).Google Scholar
11. Hill, R. M., Phil. Mag. 23, 59 (1971).Google Scholar
12. Fiegl, B., Kuhnert, R., Ben-Chorin, M., and Koch, F., Appl. Phys. Lett. 65, 371 (1994).Google Scholar
13. O'Dwyer, J. J., The Theory of Electrical Conduction and Breakdown in Solid Dielectrics, Clarendon Press, Oxford, 1973.Google Scholar
14. Bogdanov, A. V., Vikulin, I. M., and Bogdanova, T. V., Sov. Phys. Semicond. 16, 720 (1982).Google Scholar
15. Stoner, B. R., Kao, Chien-teh, Malta, D. M., and Glass, R. C., Appl. Phys. Lett. 62, 2347 (1993).Google Scholar