Article contents
High Dynamic Mechanical Strength of Zirconium-Based Bulk Amorphous Alloys
Published online by Cambridge University Press: 10 February 2011
Abstract
A bulk amorphous Zr55Al10Ni5Cu30 alloy prepared by squeeze casting was found to exhibit high mechanical strength values, i.e., uniaxial tensile fracture strength (σt) of 1850 MPa, three-point bending strength (σb) of 3200 MPa, bending fatigue strength (σf) of 1100 MPa, Charpy impact fracture energy (Ef) of 135 kJ/m2 and fracture toughness of 68 MPa√m. The σb, σf and Ef are about two times higher than those for the corresponding bulk amorphous alloys prepared by unidirectional solidification and powder consolidation techniques, though the σt of the squeeze cast sample is higher by about 15 % than those for the other samples. The remarkable increases in the σb, σf and EF are presumably due to the introduction of high compressive residual stress of about 1240 MPa in the outer surface region only for the squeeze cast sample. The finding of the effectiveness of the compressive residual stress on the increase in the mechanical strength under the bending stress mode is important and expected to be widely used as a new strengthening mechanism for bulk amorphous alloys, as is the case for reinforced oxide glasses subjected to strengthening treatment.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1999
References
- 2
- Cited by