No CrossRef data available.
Published online by Cambridge University Press: 15 February 2011
High density plasmas are being increasingly employed in both the deposition of low temperature, high quality passivant films and for highly anisotropic, nanometer-scale pattern transfer. The high degree of control necessary in these processes emphasizes the need for a more complete understanding of the basic physical and chemical mechanisms involved. To this end, a wide range of diagnostic techniques have been employed to characterize electron cyclotron resonance microwave plasmas applied to the etching of semiconductors in both chlorine- and methane-based chemistries. In particular, vacuum ultraviolet spectroscopy has been employed to identify important reactants and, where feasible, measure plasma constituent temperatures (e.g., neutral temperatures range from 0.1–0.3 eV in these plasmas). Langmuir probes, microwave interferometry and microwave electric field probes are used to monitor plasma parameters as a function of process conditions and provide understanding of microwave power deposition. Mass spectroscopy is utilized to characterize the plasma flux incident on the substrate, in terms of mass signature and charge state distribution. This flux is largely ionic with a considerable degree of dissociation, highly appropriate for directional etching. Results from each of these diagnostics are incorporated into an evolving predictive model for highly anisotropic, nanometer-scale etching of semiconductors.