Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-20T00:54:20.049Z Has data issue: false hasContentIssue false

High Concentrations of Erbium In Crystal Silicon by Thermal Or Ion-Beam-Induced Epitaxy of Erbium-Implanted Amorphous Silicon

Published online by Cambridge University Press:  21 February 2011

J. S. Custer
Affiliation:
FOM Institute for Atomic and Molecular Physics Kruislaan 407, 1098 SJ Amsterdam, the Netherlands
A. Polman
Affiliation:
FOM Institute for Atomic and Molecular Physics Kruislaan 407, 1098 SJ Amsterdam, the Netherlands
E. Snoeks
Affiliation:
FOM Institute for Atomic and Molecular Physics Kruislaan 407, 1098 SJ Amsterdam, the Netherlands
G. N. van den Hoven
Affiliation:
FOM Institute for Atomic and Molecular Physics Kruislaan 407, 1098 SJ Amsterdam, the Netherlands
Get access

Abstract

Solid phase epitaxy and ion-beam-induced epitaxial crystallization of Er-doped amorphous Si are used to incorporate high concentrations of Er in crystal Si. During solid phase epitaxy, substantial segregation and trapping of Er is observed, with maximum Er concentrations trapped in single crystal Si of up to 2 × 1020 /cm3. Ion-beam-induced regrowth results in very little segregation, with Er concentrations of more than 5 × 1020 /cm3 achievable. Photoluminescence from the incorporated Er is observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ennen, H., Schneider, J., Pomrenke, G., and Axmann, A., Appl. Phys. Lett. 43, 943 (1983).Google Scholar
2. Ennen, H., Pomrenke, G., Axmann, A., Eisele, K., Haydl, W., and Schneider, J., Appl. Phys. Lett. 46, 381 (1985).Google Scholar
3. Xie, Y.-H., Fitzgerald, E. A., and Mii, Y. J., J. Appl. Phys. 70, 3223 (1991).Google Scholar
4. Olson, G. L. and Roth, J. A., Mater. Sci. Rep. 3, 1 (1988).Google Scholar
5. Priolo, F. and Rimini, E., Mater. Sci. Rep. 5, 319 (1990).Google Scholar
6. Campisano, S. U., Gibson, J. M., and Poate, J. M., Appl. Phys. Lett. 46, 580 (1985).Google Scholar
7. Priolo, F., Batstone, J. L., Poate, J. M., Linnros, J., Jacobson, D. C., and Thompson, Michael O., Appl. Phys. Lett. 52, 1043 (1988).Google Scholar
8. Custer, J. S., Michael Thompson, O., Jacobson, D. C., and Poate, J. M., Phys. Rev. B 44, 8774 (1991).Google Scholar
9. Polman, A., Custer, J. S., Snoeks, E., and Hoven, G. N. van den, Appl. Phys. Lett. 62, 507 (1993).Google Scholar
10. Polman, A., Custer, J. S., Snoeks, E., and Hoven, G. N. van den, Nucl. Instr. and Meth. B, in press.Google Scholar
11. Davies, G., Physics Reports 176, 83 (1989).Google Scholar
12. Elliman, R. G., Williams, J. S., Brown, W. L., Leiberich, A., Maher, D. M., and Knoell, R. V., Nucl. Instrum. Methods B19/20, 435 (1987).Google Scholar
13. Schreutelkamp, R. J., Custer, J. S., Liefting, J. R., Lu, W. X., and Saris, F. W., Mater. Sci. Rep. 6, 275 (1991). This article also appears in Mat. Res. Soc. Symp. Proc. Vol 298Google Scholar