Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T17:29:04.707Z Has data issue: false hasContentIssue false

High Concentration Erbium Implantation of Epitaxially Grown Caf2 /Si Structures.

Published online by Cambridge University Press:  21 February 2011

S. Raoux
Affiliation:
Lawrence Berkeley Laboratory, MS 53, Berkeley CA 94720. On leave from DGA/DRET, 4 Rue de la porte-d'Issy, F75015 Paris.
A. S. Barriere
Affiliation:
LEMME, Université Bordeaux I, 351 Crs de la Libération, F33405 Talence.
H. J. Lozykowski
Affiliation:
Ohio University, Stocker Center, Athens, OH 45701.
I. G. Brown
Affiliation:
Lawrence Berkeley Laboratory, MS 53, Berkeley CA 94720.
Get access

Abstract

Calcium fluoride thin films grown on silicon substrates by sublimation under ultra high vacuum are well known to be highly efficient hosts for rare earth luminescence properties. For this reason we incorporate erbium by ion implantation in order to form optoelectronic integrated devices. Here we describe the incorporation conditions of erbium in CaF2/Si structures and their luminescence characteristics. The properties of the material have been investigated for implantation doses varying from 4×1014 to 1×1017 at.cm−2. The role of oxygen in the charge compensation mechanisms is investigated and it is shown that the maximum emission in erbium at 1.53μm occurs for an implanted dose of 2×1016 at.cm−2. This corresponds to an Er concentration three orders of magnitude greater than for the case of classical-erbium-doped semiconductors. At this high concentration (up to 15 at.%) the light emission mechanisms are of great theoretical interest. They involve strong Er-Er coupling effects: energy transfer, cross-relaxation phenomena and high conversion efficiencies.

These properties make erbium-implanted CaF2/Si structures excellent candidates for the production of optically active waveguides. The guiding structure can be formed by high energy implantation to build a buried active region of high refractive index within the CaF2 thin film.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rare Earth doped semiconductors. edited by Pomrenke, G. S., Klein, P. B. and Langer, D. W.. (Mater. Res. Soc. Proc., Vol. 301, 1993).Google Scholar
2. Future pspects for active fibre devices. edited by Millar, C.A.. (Proc ECOC'90, Amsterdam, the Netherlands, 1990).Google Scholar
3. Federighi, M., Massarek, I., Trwoga, P. F., Electr. Lett., Vol.30 No 11, 1277–82, (1994).Google Scholar
4. Oguma, M., Kitagawa, T., Hattori, K., Horiguchi, M.. IEEE Phot. Tech. Lett., Vol 6, No 5, 1041 (1994).10.1109/68.285549Google Scholar
5. Integrated optics: devices and applications, edited by Boyd, J.T.. (IEEE, New York, NY, 1990)Google Scholar
6. Lumholt, O., Rasmussen, T., Bjarklev, A.. Electr. Lett. Vol 29, No 5, 495, (1993).10.1049/el:19930331Google Scholar
7. Hattori, K., Kitagawa, T., Oguma, M., Ohmori, Y., Horigushi, M.. Electr. Lett. Vol 30, No 11,856 (1994)Google Scholar
8. Van den Hoven, G. N., Snoeks, E., Polman, A., van Uffelen, J. W. M., Oei, Y. S., Smit, M. K., Appl. Phys. Lett., 62, 24, 3065, (1993).10.1063/1.109136Google Scholar
9. Lalrier, E., Pocholle, J. P., Papuchon, M., He, Q., De Micheli, M., Ostrowsky, D. B., Grezes-Breset, C., Pelletier, E., Electr. Lett., Vol 28, No 15,1428, (1992).Google Scholar
10. Lui, M., MacFarlane, R. A., Yap, D. and Lederman, D., Electr. Lett., 29, 2, 172, (1993).10.1049/el:19930116Google Scholar
11. Damn, E., Legros, R., Munozyague, A., Fontaine, C., J. Appl. Phys., 75, 6,2749, (1994)Google Scholar
12. Banié, A.S., Raoux, S., Garcia, A., L'Haridon, H., Moutonnet, D. and Lambert, B., J. Appl. Phys.,75, 2, 1133, (1994).Google Scholar
13. Favennec, P.N., L'Haridon, H., Moutonnet, D., Barriere, A.S., Raoux, S. and Mombelli, B., European Patent Office, N.0543725A 1. (Nov. 18, 1992).Google Scholar
14. Raoux, S., Ph. D. Thesis, University of Bordeaux I, N° 1029, (1993). France.Google Scholar
15. Brown, I.G., Dickinson, M.R., Galvin, J.E., Godechot, X. and MacGill, R.A., Nucl. Inst. Meth. in Phys. Res. B55,506510, (1991).10.1016/0168-583X(91)96221-6Google Scholar
16. Perez, A., Nucl. Inst. Meth. in Phys. Res. B1, 621627, (1984).10.1016/0168-583X(84)90134-4Google Scholar
17. Christel, L.A. and Gibbons, J.F., J. Appl. Phys. 52(8), 5050 (1981)10.1063/1.329448Google Scholar
18. Lu, F., Gunapala, S., Croft, M., Stofel, N.G., Boer, M.L. den, J. Appl. Phys. 63(8), 3692, (1988).10.1063/1.340688Google Scholar
19. Sobolev, B. P, Fedorov, P.P., J. Less. Com. Metals, 60,3346, (1978)10.1016/0022-5088(78)90087-5Google Scholar
20. Reau, J.M., Wahbi, M., Senegas, J., Hagenmuller, P., Phys. stat. sol. (b) 169, 331, (1992).10.1002/pssb.2221690206Google Scholar
21. Buchal, Ch. and Mohr, S.,.in Physical Concepts of Materials for Novel Optoelectronic Device Applications I. SPIE, Vol.136 1, (1990).Google Scholar
22. Rochaix, C., Rolland, A., Favennec, P.N., Lambert, B., Corre, A. Le, L'Haridon, H. and Salvi, M., Jap. J. of Appl. Phys. 27, 12, L2348–50 (1988).Google Scholar
23. Lhomer, C., Lambert, B., Toudic, Y., Corre, A. Le, Gauneau, M., Semic. Sci. Technol. 6, 916923, (1991).10.1088/0268-1242/6/9/014Google Scholar
24. Lozykowski, H.J., Alshawa, A.K. and Brown, I., J. Appl. Phys. 76 (8), 4836, (1994).Google Scholar
25. Baniere, A.S., Cesaire, T., Hirsch, L, Lambert, B. and Raoux., S., Part I, J. Appl. Phys., 77,10,15 May (1995).Google Scholar
26. Barriere, A.S., Kim, B. Y., Mombelli, B., Porie, B. and Raoux, S., Part II J. Appl. Phys., 77,10,15 May (1995).Google Scholar
27. Miller, M.P., Wright, J.C., J. Chem. Phys. 71(1), 324338 (1979).10.1063/1.438074Google Scholar
28. Riseberg, L.A., Weber, M.J., Progress in optics, Vol XIV edit. E. Wolf-Noth-Holland, Amsterdam, (1976).Google Scholar
29. Wright, J.C., in Topics in Applied Physics, edited by Fong, F.K., Springer, New York, vol.15,239, (1976)Google Scholar
30. Auzel, F., Proc. IEEE 61,758, (1973).Google Scholar