Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:47:06.836Z Has data issue: false hasContentIssue false

High common-emitter current gains obtained by pnp GaN bipolar junction transistors

Published online by Cambridge University Press:  21 March 2011

Kazuhide Kumakura
Affiliation:
NTT Basic Research Laboratories, NTT Corporation 3-1 Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-0198, Japan
Toshiki Makimoto
Affiliation:
NTT Basic Research Laboratories, NTT Corporation 3-1 Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-0198, Japan
Naoki Kobayashi
Affiliation:
NTT Basic Research Laboratories, NTT Corporation 3-1 Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-0198, Japan
Get access

Abstract

We fabricated pnp GaN bipolar junction transistors and investigated their common-emitter and common-base current-voltage characteristics. The device structures were grown by metalorganic vapor phase epitaxy on a sapphire substrate. The base thickness was 0.12 μm and its electron concentration was estimated to be 3 × 1017 cm-3 from the common-emitter current-voltage characteristics and the base conductivity. The common-emitter current-voltage characteristics showed very low leak current. The maximum current gains at room temperature were 50 and 69 from the common-emitter and the common-base current-voltage characteristics, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yoshida, Seikoh and Suzuki, Joe, J. Appl. Phys. 85, 7931 (1999).Google Scholar
2. McCarthy, L. S., Kozodoy, P., DenBaars, S. P., Rodwell, M. and Mishra, U. K., 25th Int. Symp. Compound Semiconductors, We2A-1, Nara, Japan, October 1998.Google Scholar
3. Shelton, B. S., Huang, J. J., Lambert, D. J. H., Zhu, T. G., Wong, M. M., Eiting, C. J., Kwon, H. K., Feng, M. and Dupuis, R. D., Electron. Lett. 36, 80 (2000).Google Scholar
4. Ren, F., Abernathy, C. R., Hove, J. M. Van, Chow, P. P., Hickman, R., Klaasen, J. J., Kopf, R. F., Cho, H., Jung, K. B., Roche, J. R. La, Wilson, R. G., Han, J., Shul, R. J., Baca, A. G. and Pearton, S. J., MRS Internet J. Nitride Semicond. Res. 3, 41 (1998).Google Scholar
5. Xing, H., Chavarkar, P., Sharma, R., Champlain, J. G., Keller, S., Mishra, U. K., and DenBaars, S. P., International symposium on compound semiconductors, Tokyo, 2001, ThM-7.Google Scholar
6. Kumakura, K., Makimoto, T. and Kobayashi, N., Jpn. J. Appl. Phys. 39, L337 (2000).Google Scholar
7. Kumakura, K., Makimoto, T. and Kobayashi, N., J. Cryst. Growth 221, 267 (2000).Google Scholar
8. Makimoto, T., Kumakura, K. and Kobayashi, N., J. Cryst. Growth 221, 350 (2000).Google Scholar
9. Kumakura, K., Makimoto, T. and Kobayashi, N., Proceedings of International Workshop on Nitride Semiconductors (IWN2000), IPAP Conf. Series 1, 797 (2001).Google Scholar
10. Makimoto, T., Kumakura, K. and Kobayashi, N., Appl. Phys. Lett. 79, 380 (2001).Google Scholar
11. Kobayashi, K. W., Umemoto, D. K., Velebir, J. R. Jr, Oki, A. K. and Streit, D. C., IEEE J. Solid-State Circuits, 28, 1011 (1993).Google Scholar
12. Zang, A. P., Dang, G., Ren, F., Han, J., Monier, C., Baca, A. G., Cao, X. A., Cho, H., Abernathy, C. R. and Pearton, S. J., 2000 Materials Research Society Spring Meeting, T. 3. 2, San Francisco, Apr. (2000).Google Scholar
13. Zang, A. P., Dang, G. T., Ren, F., Han, J., Baca, A. G., Shul, R. J., Cho, H., Monier, C., Cao, X. A., Abernathy, C. R. and Pearton, S. J., Appl. Phys. Lett. 76, 2943 (2000).Google Scholar