Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T02:29:04.016Z Has data issue: false hasContentIssue false

Hierarchical Design and Nanomechanics of the Calcified Byssus of Anomia simplex

Published online by Cambridge University Press:  31 January 2011

Jakob R Eltzholtz
Affiliation:
[email protected], Aarhus University, Department of Chemistry, Aarhus, Denmark
Marie Krogsgaard
Affiliation:
[email protected], Aarhus University, Department of Chemistry, Aarhus, Denmark
Henrik Birkedal
Affiliation:
[email protected], Aarhus University, Department of Chemistry, Aarhus, Denmark
Get access

Abstract

Biology has evolved several strategies for attachment of sedentary animals. In the bivalves, byssi abound and the best known example being the protein-based byssus of the blue mussel and other Mytilidae. In contrast the bivalve Anomia sp. has a single calcified thread. The byssus is hierarchical in design and contains several different types of structures as revealed by scanning electron microscopy images. The mechanical properties of the byssus are probed by nanoindentation. It is found that the mineralized part of the byssus is very stiff with a reduced modulus of about 67 GPa and a hardness of ˜3.7 GPa. This corresponds to a modulus roughly 20% smaller than that of pure calcite and a hardness that is about 20% larger than pure calcite. The results reveal the importance of microstructure on mechanical performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Waite, J. H., Biol. Rev. 58, 209 (1983).10.1111/j.1469-185X.1983.tb00387.xGoogle Scholar
2 Waite, J. H., Integr. Comp. Biol. 42, 1172 (2002).10.1093/icb/42.6.1172Google Scholar
3 Waite, J. H., Lichtenegger, H. C., Stucky, G. D., and Hansma, P., Biochemistry 43, 7653 (2004).10.1021/bi049380hGoogle Scholar
4 Holten-Andersen, N., Fantner, G. E., Hohlbauch, S., Waite, J. H., and Zok, F. W., Nature Materials 6, 669 (2007).10.1038/nmat1956Google Scholar
5 Lin, Q., Gourdon, D., Sun, C., N. Holten-Andersen, Anderson, T. H., Waite, J. H., and Israelachvili, J. N., Proc. Natl. Acad. Sci. USA 104, 3782 (2007).10.1073/pnas.0607852104Google Scholar
6 Zhao, H., and Waite, J. H., J. Biol. Chem. 281, 26150 (2006).10.1074/jbc.M604357200Google Scholar
7 Yonge, C. M., Phil. Trans. R. Soc. Lond. B 276, 453 (1977).10.1098/rstb.1977.0005Google Scholar
8 Prezant, R. S., American Malacological Bulletin 2, 41 (1984).Google Scholar
9 Pujol, J. P., Bocquet, J., Tiffon, Y. and, M.Rolland, Calc. Tiss. Res. 5, 317 (1970).10.1007/BF02017561Google Scholar
10 Yamaguchi, K., Marine Biology 132, 651661 (1998).10.1007/s002270050430Google Scholar
11 Eltzholz, J. R., and Birkedal, H., J. Adhesion in press (2009).Google Scholar
12 Oliver, W. C., and Pharr, G. M., J. Mater. Res. 7, 1564 (1992).10.1557/JMR.1992.1564Google Scholar
13 Birkedal, H., Khan, R. K., Slack, N., Broomell, C., Lichtenegger, H. C., Zok, F., Stucky, G. D., and Waite, J. H., ChemBioChem 7, 1392 (2006).10.1002/cbic.200600160Google Scholar
14 Waite, J. H., Tanzer, M. L. in CRC Handbook of Biochemistry in Aging edited by Florini, J. R., (CRC Press, Boca Raton, FL, 1981) pp. 195219.Google Scholar
15 Lichtenegger, H. C., Birkedal, H., and Waite, J. H., Metals Ions in Life Sciences 4, 295 (2008).Google Scholar
16 Fong, H., Sarikaya, M., White, S. N., and Snead, M. L., Mater. Sci. Eng. C 7, 119 (2000).10.1016/S0928-4931(99)00133-2Google Scholar
17 Pérez-Huerta, A., Cusack, M., Zhu, W., England, J., and Hughes, J., J. R. Soc. Interface 4, 33 (2007).10.1098/rsif.2006.0150Google Scholar
18 Zügner, S., Marquardt, K., and Zimmermann, I., Eur. J. Pharm. Biopharm. 62, 194 (2006).10.1016/j.ejpb.2005.08.002Google Scholar