Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T09:27:55.144Z Has data issue: false hasContentIssue false

HgCdTe MBE Technology : A Focus On Chemical Doping

Published online by Cambridge University Press:  21 February 2011

Owen K. Wu*
Affiliation:
Hughes Research Laboratories, 3011 Malibu Canyon Road, Malibu, CA 90265
Get access

Abstract

HgCdTe MBE technology is becoming a mature growth technology for infrared focal plane array applications. The ability to dope HgCdTe with In(n-type) and As(p-type) dopants in-situ provides greater flexibilities for fabricating heterojunction devices. In this paper, we will first discuss the current status of HgCdTe MBE growth and then focus on the key results in the control of In(n-type) doping, various approaches and breakthroughs in the growth of As(p-type) doped HgCdTe and issues related to doping such as memory effects and dopants activation. In addition, device results from double layer heterojunction structure(DLHJ) will be briefly discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Haase, M. A., Qiu, J., DePudt, J. M. and Cheng, H., Appl. Phys. Letters 59, 1272(1991)Google Scholar
2. Norton, P. N., Optical Engineering, 30(Nov) 1649 (1991)CrossRefGoogle Scholar
3. Jeon, H., Ding, J., Nurmikko, A. V., Xie, W., Grillo, D. C., Kobayashi, M., Gunshor, R. L., Gua, G. C., and Otsuka, N., Appl. Phys. Lett., 60(17), 2045 1992 Google Scholar
4. Zucca, R., Zandian, M., Arias, J. M., and Gil, R. V., J. Vac. Sci. Technol. B10(4), 1587 (1992)CrossRefGoogle Scholar
5. Qiu, Y., He, L., Li, J., Yuan, S., Becker, C. R. and Landwehr, G., Appl. Phys. Lett. 62(10) 1134, (1993)Google Scholar
6. Pautrat, J. L., Francou, J. M., magnea, N., Molva, E. and Saminadayar, K., J. Crystal Growth 72, 194 (1985)CrossRefGoogle Scholar
7. Mandel, G., Phys. Rev. A134, 1073(1964)CrossRefGoogle Scholar
8. Stutius, W., J. Crystal Growth 59,1 (1982)Google Scholar
9. Park, R. M., Mar, H. A. and Salansky, N. M., J. Appl. Phys. 58, 1047(1985)Google Scholar
10. Wu, O. and Kamath, G., J. Vac. Sci. Technol A8(2), 1034(1990)CrossRefGoogle Scholar
11. Schetzina, J., Han, J., Lansari, Y., Giles, N., Yang, Z., Hwang, S. and Cook, J. Jr., J. Crystal Growth 101,23(1990)Google Scholar
12. Arias, J., Shin, S., Copper, D., Zandian, M., Pasko, J., Gertner, E., Dewames, R. and Singh, J., J. Vac. Sci. Technol. A8(2), 1025(1990)Google Scholar
13. Wu, O., Jamba, D. and Kamath, G., J. Crystal Growth, to be published.Google Scholar
14. Kamath, G. and Wu, O., US Patent Number 5,028,561, July 1, 1991 Google Scholar
15. Korenstein, R., Hallock, P., Lee, D., Sullivan, E., Gedridge, R. and Higa, K., The 1992 U.S. Workshop on the Physics and Chemistry of Mercury Cadmium Telluride and Other IR Materials, Extended Abstract 117(1992)Google Scholar
16. Tung, T., J. Crystal Growth 86,161 (1988)Google Scholar
17. Rajavel, D. and Summer, C., Appl. Phys. Lett. 60, 2231(1992)Google Scholar
18. Boukerche, M., Wijewarnasuriya, P.S., Sivananthan, S., Sou, I., Kim, Y., Mahavadi, K. and Faurie, J., J. Vac. Sci. Technol. A(6)4, 2830(1988)CrossRefGoogle Scholar
19. Wroge, M., Peterman, D., Feldman, B., Morris, B., Leopold, D. and Broerman, J., J. Vac. Sci. Technol., A7(2), 435(1989)Google Scholar
20. Maxey, C., Capper, P., Whiffm, P., Easton, B., Gale, I. and Clegg, J., Mater. Lett 8,385(1989)Google Scholar
21. Edwell, D., Bubulac, L., and Gertner, E., J. Vac. Sci. Technol. B10(4), 1423 (1992)Google Scholar
22. Radford, W. and Jones, C., Proceedings of the IRIS Detector Specialty Conference, Seattle, WA August, 1984 Google Scholar