No CrossRef data available.
Published online by Cambridge University Press: 10 February 2011
We have investigated the initial stages of Cu (001) oxidation in dry and moist oxidizing conditions using in situ ultra-high vacuum (UIHV) transmission electron microscopy (TEM). To investigate the role of moisture in the solid state reactions in Cu oxidation, we have examined the oxidation of Cu (001) with water vapor. Our observation indicate that water vapor causes reduction of Cu2O and retards the oxidation rate if both oxygen gas and water vapor are used simultaneously which contradicts the thermochemical data. We are also modeling the nucleation to coalescence of the oxide scale using the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation and have noted a qualitative agreement.