Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:25:05.587Z Has data issue: false hasContentIssue false

Heavy Metal Fluoride Glasses for Optical Applications

Published online by Cambridge University Press:  25 February 2011

W. A. Sibley
Affiliation:
Physics Department, Oklahoma State University Stillwater, Oklahoma 74078
D. C. Yeh
Affiliation:
Physics Department, Oklahoma State University Stillwater, Oklahoma 74078
Y. Suzuki
Affiliation:
Physics Department, Oklahoma State University Stillwater, Oklahoma 74078
G. J. Quarles
Affiliation:
Physics Department, Oklahoma State University Stillwater, Oklahoma 74078
R. C. Powell
Affiliation:
Physics Department, Oklahoma State University Stillwater, Oklahoma 74078
Get access

Abstract

Great progress has been made in optical device technology over the past decade. This progress brings a host of new services which include voice, data and visual communications. The realization of low loss optical fibers which give rise to long distance optical communication and the growth in information processing through computer technology will lead to an accelerating growth in the utilization of light guides and light wave communication systems. Heavy metal fluoride glasses have proved to be excellent hosts for both rare earth and 3d transition metal ions. In addition, their potential as light guides is at present unexcelled. This glass is especially promising for optical display devices, laser hosts, and electroluminescence panels. Numerous defects and impurities can be incorporated in the glass which absorb or emit light. Through optical studies of rare earth ions such as Er3+, Ho3+, Nd3+ and Pr3+ it is possible to investigate the multiphonon emission rate for optical transitions in the heavy metal fluoride materials. It is found that these particular materials have a much lower multiphonon rate than oxide glasses. This makes them attractive for room temperature devices. When 3d transition metal ions are incorporated into heavy metal fluoride glasses, the optical properties are similar in many cases to those in crystals. Inhomogeneous broadening of the absorption and emission bands occurs in the glass, but the lifetimes and oscillator strengths of the transitions in glass and crystals are of the same magnitude. Radiation damage of glasses can be detrimental to long range optical communication. It is found that the heavy metal fluoride glasses damage by the photochemical mechanism which is also dominant in highly ionic materials. Optical absorption and electron spin resonance measurements have been utilized to identify the types of radiation induced defects in these materials.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

VI. References

1. Lucas, J., Chanthanasihn, M., Poulain, M., Poulain, M., Brun, P. B., and Weber, M. J.. J. Non-Cryst. Solids 27, 273 (1978).Google Scholar
2. Lecoq, A. and Poulain, M., Verres Refract 34, 333 (1980).Google Scholar
3. Shinn, M. D., Sibley, W. A., Drexhage, M. G., and Brown, R. N., Phys. Rev. B27, 6635 (1983).Google Scholar
4. Brassington, M. P., Hailing, T., Miller, A. J., and Sounders, G. A.. Mater. Res. Bull. 16, 631 (1981).CrossRefGoogle Scholar
5. Gavin, D.L., Chung, K.-H., Bruce, A. J., Moynihan, C. T., Drexhage, M. G., and El-Bayoumi, O. H., J. Am. Ceram. Soc. 65, C182 (1982).Google Scholar
6. Leroy, D., Lucas, J., Poulain, M., and Rovaine, D., Mater. Res. Bull. 13 1125 (1978).Google Scholar
7. Tran, D. C., Sigel, G. H., and Bendow, B., J. Lightwave Technology LT–2, 566 (1984).Google Scholar
8. Drexhage, M. G., in: Treatise on Material Science and Technology. Vol.26, eds. Tomozawa, M. and Doremus, R. H. (Academic Press, New York, 1985), p. 151243.Google Scholar
9. Riseberg, L. A. and Weber, M. J. in: Progress in Optics, Vol. XIV, ed. by E., Wolf (North Holland, Amsterdam, 1976), p. 89 and Handbook of Laser Science & Tech. Vol. I ed. Marvin J. Weber, CRC Press, Fla. (1982).Google Scholar
10. Drexhage, M. G., Bendow, B., and Moynihan, C. T., Laser Focus 10, 62 (1980).Google Scholar
11. Bendow, B. and Drexhage, M. G.. Proc. Soc. Photo-Opt. Instrum. Eng. 266, 16 (1981); Opt. Eng. 21, 118 (1982).Google Scholar
12. Slim, H., Ph.D. Thesis. University Rennes, Rennes, France (1981).Google Scholar
13. Drexhage, M. G., El-Bayoumi, O. H., Moynihan, C. T., Bruce, A. J., Chung, K.-H., Gavin, D. L., and Lovetz, T. J., J. Am. Ceram. Soc. 65, C168 (1982).Google Scholar
14. Fisanich, P. E., Halliburton, L. E., Feuerhelm, L. N., and Sibley, S. M., J. Non- Cryst. Solids 70, 37 (1985).Google Scholar
15. Cases, R., Griscom, D. L., and Tran, D. C., J. Non-Cryst. Solids 72 51 (1985).Google Scholar
16. Griscorn, D. L. and Tran, D. C., J. Non-Cryst. Solids 72, 159 (1985).CrossRefGoogle Scholar
17. Tanimura, K., Ali, M., Feuerhelm, L. N., Sibley, S. M., and Sibley, W. A., J. Non- Cryst. Solids 70, 397 (1985).Google Scholar
18. Friebele, E. J. and Tran, D. C., J. Non-Cryst. Solids 72, 221 (1985); Commun. Am. Cer. Soc., 68. C-279 (1985).CrossRefGoogle Scholar
19. Tanimura, K., Sibley, W. A., Suscavage, M., and Drexhage, M. G., J. Appl. Phys. To be published.Google Scholar
20. Adam, J. L. and Sibley, W. A., J. Non-Crystalline Solids. To be published.Google Scholar
21. Tanimura, K., Shinn, M. D., Sibley, W. A., Drexhage, M. G., and Brown, R. N., Phys. Rev. B30 2429 (1984).Google Scholar
22. Reisfeld, R., Katz, G., Spector, N., Jorgensen, C. K., Jacoboni, C., and DePape, R., J. Solid State Chem. 41, 253 (1982).CrossRefGoogle Scholar
23. Jorgensen, C. K. and Reisfeld, t., J. of Less-Common Metals 73, 107 (1982).Google Scholar
24. Auzel, F. E., Proc. IEEE 61, 758 (1973).Google Scholar
25. Wright, J. C. in Topics in Appl. Phys. Vol.15, ed. Fong, F. K., (Springer-Verlag, New York, 1976), p. 237.Google Scholar
26. Tanabe, Y. and Suigano, S., J. Phys. Soc. Japan 9, 753 (1959).Google Scholar
27. Feuerhelm, L. N., Sibley, S. M., and Sibley, W. A., J. Solid State Chem. 54 164 (1984).Google Scholar