Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T03:53:01.100Z Has data issue: false hasContentIssue false

HEAVILY Si-DOPED AlAs FILMS GROWN BY MOLECULAR BEAM EPITAXY

Published online by Cambridge University Press:  28 February 2011

K. KOBAYASHI
Affiliation:
Science and Technical Research Laboratories of NHK (Japan Broadcasting Corp.) 1-10-11 Kinuta, Setagaya-ku, Tokyo 157, Japan
N. KAMATA
Affiliation:
Science and Technical Research Laboratories of NHK (Japan Broadcasting Corp.) 1-10-11 Kinuta, Setagaya-ku, Tokyo 157, Japan
T. SUZUKI
Affiliation:
Science and Technical Research Laboratories of NHK (Japan Broadcasting Corp.) 1-10-11 Kinuta, Setagaya-ku, Tokyo 157, Japan
Get access

Abstract

Heavily Si-doped aluminium arsenide films on GaAs substrate by MBE have been investigated. It is found that the Si activation energy ED for AlAs films decreases with increasing Si donor concentration, approaching a few meV for n≧3×l018. The maximum free electron concentration of n=7×l018 cm−3 and electron mobility of 200 cm2/V.sec for n=5×l017 were obtained. It is also shown that the replacement of the ternary AlxGal−xAs with a superlattice having heavily Si-doped binary AlAs in the barrier layers is effective to increase free carrier concentration.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Coleman, J.J., Dapkus, P.D., N. Holonyak,Jr. and Laidig, W.D., Appl. Phys. Lett. 38, 894 (1981).CrossRefGoogle Scholar
2. Whitaker, J., Solid-State Electron., a, 649 (1965).Google Scholar
3. Ettenberg, M., Sigai, A.G., A.Dreeben and Gilbert, S.L., J. Electrochem. U11, 1355 (1971).Google Scholar
4. Tsang, W.T., Appl. Phys. Lett. 35, 426 (1978).CrossRefGoogle Scholar
5. Bonnefoi, A.R., Collins, R.T., Mcgill, T.C., Burnham, R.D. and Ponce, F.A., Appl. Phys. Lett. 46, 285 (1985).CrossRefGoogle Scholar
6.Tadao Ishibashi, Seigo Tarucha and Hiroshi Okamoto, Jpn. J. Appl. Phys. 21, L476 (1982).CrossRefGoogle Scholar
7. Ishikawa, T., Saito, J., Sasa, S. and Hiyamizu, S., Jpn. J. Appl. Phys. 11, L675 (1982).Google Scholar
8.Toshio Baba, Takashi Mizutani, and Masaki Ogawa, Jpn. J. Appl. Phys. L2, L627 (1983).Google Scholar
9. Kobayashi, K., Kamata, N., Fujimoto, I., Okada, M. and Suzuki, T., J. Vac. Sci. Technol. B, 3, 753 (1985).Google Scholar
10. MorkoS, H., Cho, A.Y., and C. Radice,Jr., J. Appl. Phys. 51, 4882 (1980).Google Scholar
11. Chand, N., Fisher, R., Klem, J., Henderson, T., Pearah, P., Masselink, W.T., Chang, Y.C. and Morkoj, H., J. Vac. Sci. Technol. B, 3, 644 (1985).CrossRefGoogle Scholar