Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T07:22:26.586Z Has data issue: false hasContentIssue false

Hard X-ray beam damage study of monolayer Ni islands using SX-STM

Published online by Cambridge University Press:  13 February 2015

Nozomi Shirato*
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA.
Marvin Cummings
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA.
Heath Kersell
Affiliation:
Nanoscale and Quantum Phenomena Institute, Physics & Astronomy Department, Ohio University, Athens, OH 45701, USA.
Yang Li
Affiliation:
Nanoscale and Quantum Phenomena Institute, Physics & Astronomy Department, Ohio University, Athens, OH 45701, USA.
Dean Miller
Affiliation:
Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA.
Daniel Rosenmann
Affiliation:
Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA.
Saw-Wai Hla
Affiliation:
Nanoscale and Quantum Phenomena Institute, Physics & Astronomy Department, Ohio University, Athens, OH 45701, USA. Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA.
Volker Rose*
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA. Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA.
*
*Corresponding authors: (N.S.) [email protected]
Get access

Abstract

X-ray beam-induced damage in nanoscale metal islands was investigated. Monolayer-high Ni islands were prepared on a Cu(111) substrate. High brilliance X-rays with photon energies between 8.45 and 8.85 keV illuminated the sample for about 11 hours. In order to track changes in the morphology of the islands, the synchrotron X-ray scanning tunneling microscopy (SX-STM) technique was utilized. The result shows that X-ray illumination onto Ni islands does not induce noticeable damage. The study demonstrates that local beam-induced changes can be studied using SX-STM.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sanishvili, R., Yoder, D. W., Pothineni, S. B., Rosenbaum, G., Xu, S., Vogt, S., Stepanov, S., Makarov, O. A., Corcoran, S., Benn, R., Nagarajan, V., Smith, J. L. and Fischetti, R. F., Proceedings of the National Academy of Sciences, 108, 15, 61276132 (2011).CrossRefGoogle Scholar
Shimizu, N., Hirata, K., Hasegawa, K., Ueno, G. and Yamamoto, M., J. Synchrotron Rad., 14, 410 (2007).CrossRefGoogle Scholar
Sliz, P., Harrison, S. C. and Rosenbaum, G., Structure, 11, 1319 (2003).CrossRefGoogle Scholar
Beetz, T. and Jacobsen, C., J. Synchrotron Rad., 10, 280283 (2003).CrossRefGoogle Scholar
Ramallo-López, J. M., Giovanetti, L. J., Vicentin, F. C. and Requejo, F. G., J. Physics: Conference Series, 430, 1, 012034 (2013).Google Scholar
Holt, M., Harder, R., Winarski, R. and Rose, V., Annu. Rev. Mater. Res, 43, 183211 (2013).CrossRefGoogle Scholar
Saito, A., Tanaka, T., Takagi, Y., Hosokawa, H., Notsu, H., Ohzeki, G., Tanaka, Y., Kohmura, Y., Akai-Kasaya, M., Ishikawa, T., Kuwahara, Y., Kikuta, S. and Aono, M., J. Nanosci. Nanotechnol., 11, 28732881 (2011).CrossRefGoogle Scholar
Saito, A., Maruyama, J., Manabe, K., Kitamoto, K., Takahashi, K., Takami, K., Yabashi, M., Tanaka, Y., Miwa, D., Ishii, M., Takagi, Y., Akai-Kasaya, M., Shin, S., Ishikawa, T., Kuwahara, Y. and Aono, M., J. Synchrotron Rad., 13, 216220 (2006).CrossRefGoogle Scholar
Cummings, M. L., Chien, T. Y., Preissner, C., Madhavan, V., Diesing, D., Bode, M., Freeland, J. W. and Rose, V., Ultramicroscopy, 112, 2231 (2012).CrossRefGoogle Scholar
Hasegawa, Y., Okuda, T., Eguchi, T., Matsushima, T., Harasawa, A., Akiyama, K. and Kinoshita, T., Hyomen Kagaku, 26, 12, 752756 (2005).CrossRefGoogle Scholar
Chiu, C.-Y., Chan, Y.-L., Hsu, Y. J. and Wei, D. H., Appl. Phys. Lett., 92, 103101 (2008).CrossRefGoogle Scholar
Shirato, N., Cummings, M. L., Kersell, H. R., Li, Y., Stripe, B., Rosenmann, D., Hla, S. W. and Rose, V., Nano Letters, 14, 64996504 (2014).CrossRefGoogle Scholar
Winarski, R. P., Holt, M. V., Rose, V., Fuesz, P., Carbaugh, D., Benson, C., Shu, D., Kline, D., Stephenson, G. B., McNulty, I. and Maser, J., J. Synchrotron Rad., 19, 6, 10561060 (2012).CrossRefGoogle Scholar
Rose, V., Freeland, J. W., Gray, K. E. and Streiffer, S. K., Appl. Phys. Lett., 92, 193510 (2008).CrossRefGoogle Scholar
Rose, V., Wang, K., Chien, T., Hiller, J., Rosenmann, D., Freeland, J. W., Preissner, C. and Hla, S.-W., Adv. Funct. Mater., 23, 20, 26462652 (2013).CrossRefGoogle Scholar
Akiyama, K., Eguchi, T., An, T., Hasegawa, Y., Okuda, T., Harasawa, A. and Kinoshita, T., Rev. Sci. Instrum., 76, 083711 (2005).CrossRefGoogle Scholar
Rose, V., Chien, T.Y., Hiller, J., Rosenmann, D. and Winarski, R.P., Appl. Phys. Lett., 99, 173102 (2011).CrossRefGoogle Scholar
Wang, K., Rosenmann, D., Holt, M., Winarski, R., Hla, S.-W. and Rose, V., Rev. Sci. Instrum., 84, 063704 (2013).CrossRefGoogle Scholar
Gross, L., Nature Chem., 3, 273278 (2011).CrossRefGoogle Scholar