Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T01:20:25.786Z Has data issue: false hasContentIssue false

Growth Techniques for Bulk ZnO and Related Compounds

Published online by Cambridge University Press:  14 February 2012

Detlef Klimm
Affiliation:
Leibniz Institute for Crystal Growth, Max-Born-Str. 2, 12489 Berlin, Germany
Detlev Schulz
Affiliation:
Leibniz Institute for Crystal Growth, Max-Born-Str. 2, 12489 Berlin, Germany
Steffen Ganschow
Affiliation:
Leibniz Institute for Crystal Growth, Max-Born-Str. 2, 12489 Berlin, Germany
Zbigniew Galazka
Affiliation:
Leibniz Institute for Crystal Growth, Max-Born-Str. 2, 12489 Berlin, Germany
Reinhard Uecker
Affiliation:
Leibniz Institute for Crystal Growth, Max-Born-Str. 2, 12489 Berlin, Germany
Get access

Abstract

ZnO bulk crystals can be grown by several methods. 1) From the gas phase, usually by chemical vapor transport. Such CVT crystals may have high chemical purity, as the growth is performed without contact to foreign material. The crystallographic quality is often very high (free growth). 2) From melt fluxes such as alkaline hydroxides or other oxides (MoO3, V2O5, P2O5, PbO) and salts (PbCl2, PbF2). Melt fluxes offer the possibility to grow bulk ZnO under mild conditions (<1000°C, atmospheric pressure), but the crystals always contain traces of solvent. The limited purity is a severe drawback, especially for electronic applications. 3) From hydrothermal fluxes, usually alkaline (KOH, LiOH) aqueous solutions beyond the critical point. Due to the amphoteric character of ZnO, the supercritical bases can dissolve it up to several per cent of mass. The technical requirements for this growth technology are generally hard, but this did not hinder its development as the basic technique for the growth of α-quartz, and meanwhile also of zinc oxide, during the last decades. 4) From pure melts, which is the preferred technology for numerous substances applied whenever possible, e.g. for the growth of silicon, gallium arsenide, sapphire, YAG. The benefits of melt growth are (i) the high growth rate and (ii) the absence of solvent related impurities. In the case of ZnO, however, it is difficult to find container materials that are compatible from the thermal (fusion point Tf = 1975°C) and chemical (required oxygen partial pressure) point of view. Either cold crucible (skull melting) or Bridgman (with reactive atmosphere) techniques were shown to overcome the problems that are inherent to melt growth. Reactive atmospheres allow to grow not only bulk ZnO single crystals, but also other TCOs such as β-Ga2O3 and In2O3.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Seyferth, D., Organometallics 20, 2940 (2001). doi: 10.1021/om010439f Google Scholar
2. Klimm, D., Schulz, D., Ganschow, S., in: Bhattacharya, P., Fornari, R., and Kamimura, H. (Eds.), Comprehensive Semiconductor Science and Technology, Vol. 3, p. 302, Amsterdam (2011).Google Scholar
3. Rojo, J. C., Liang, S., Chen, H., Dudley, M., Proc. SPIE 6122, 61220Q, doi:10.1117/12.656322.Google Scholar
4. Scharowsky, E., Z. Phys. 135, 318 (1953), in German .Google Scholar
5. Helbig, R., J. Crystal Growth 15, 25 (1972), in German .Google Scholar
6. Look, D. C., Reynolds, D. C., Sizelove, J. R., Jones, R. L., Litton, C. W., Cantwell, G., Harsch, W. C., Solid State Communications 105, 399 (1998).Google Scholar
7. Mikami, M., Eto, T., Wang, J., Masa, Y., Isshiki, M., J. Crystal Growth 276, 389 (2005).Google Scholar
8. Santailler, J.-L., Audoin, C., Chichignoud, G., Obrecht, R., Kaouache, B., Marotel, P., Pelenc, D., Brochen, S., Merlin, J., Bisotto, I., Granier, C., Feuillet, G., Levy, F., J. Crystal Growth 312, 3417 (2010).Google Scholar
9. Ntep, J.-M., Said Hassani, S., Lusson, A., Tromson-Carli, A., Ballutaud, D., Didier, G., Triboulet, R., J. Crystal Growth 207, 30 (1999).Google Scholar
10. Brauer, G., Anwand, W., Grambole, D., Grenzer, J., Skorupa, W., ČÍžek, J., Kuriplach, J., Procházka, I., Ling, C. C., So, C. K., Schulz, D., Klimm, D., Phys. Rev. B 79, 115212 (2009).Google Scholar
11. Fritsch, O., Annalen der Physik 22, 375 (1935), in German .Google Scholar
12. Burmeister, J., phys. stat. sol. (b) 10, K1 (1965), in German .Google Scholar
13. Nause, J. E., III-Vs Review 12, 28 (1999).Google Scholar
14. Nause, J., Nemeth, B., Semiconductor Science and Technology 20, S45 (2005).Google Scholar
15. Schulz, D., Ganschow, S., Klimm, D., J. Crystal Growth 296, 27 (2006).Google Scholar
16. Klimm, D., Ganschow, S., Schulz, D., Bertram, R., Uecker, R., Reiche, P., Fornari, R., J. Crystal Growth 311, 534 (2009).Google Scholar
17. Klimm, D., Ganschow, S., Schulz, D., Fornari, R., J. Crystal Growth 310, 3009 (2008).Google Scholar
18. Kashyap, S. C., J. Appl. Phys. 44, 4381 (1973).Google Scholar
19. Hashimoto, H., Hayashi, F., Uematsu, T., Moriyoshi, Y., J. Mat. Sci. Lett. 1, 4 (1982).Google Scholar
20. Wanklyn, B. M., J. Crystal Growth 7, 107 (1970).Google Scholar
21. Oka, K., Shibata, H., Kashiwaya, S., J. Crystal Growth 237-239, 509 (2002).Google Scholar
22. Fischer, K., Sinn, E., Crystal Research and Technology 16, 689 (1981).Google Scholar
23. Hong, S.-H., Sato, T., Mikami, M., Uchikoshi, M., Mimura, K., Masa, Y., Isshiki, M., J. Crystal Growth 311, 3451 (2009).Google Scholar
24. Walker, A. C., J. Amer. Ceram. Soc. 36, 250 (1953).Google Scholar
25. Ohshima, E., Ogino, H., Niikura, I., Maeda, K., Sato, M., Ito, M., Fukuda, T., J. Crystal Growth 260, 166 (2004).Google Scholar
26. Dem’yanets, L. N., Lyutin, V.I., J. Crystal Growth 310, 993 (2008).Google Scholar
27. Fortunato, E., Ginley, D., Hosono, H., Paine, D. C., MRS Bull. 32, 242 (2007).Google Scholar
28. Galazka, Z., Uecker, R., Irmscher, K., Schulz, D., Klimm, D., Albrecht, M., Pietsch, M., Ganschow, S., Kwasniewski, A., Fornari, R., J. Crystal Growth, in print (2011), doi: 10.1016/j.jcrysgro.2011.10.029.Google Scholar
29. Galazka, Z., Uecker, R., Irmscher, K., Albrecht, M., Klimm, D., Pietsch, M., Brützam, M., Bertram, R., Ganschow, S., Fornari, R., Crystal Research and Technology 45, 1229 (2010).Google Scholar
30. Tomm, Y., Reiche, P., Klimm, D., Fukuda, T., J. Crystal Growth 220, 510 (2000).Google Scholar
31. FactSage 6.2 Software and Databases, GTT Technologies Herzogenrath (Germany), www.factsage.com (accessed Nov.4, 2011).Google Scholar
32. Enoki, H., Echigoya, J., Suto, H., J. Mat. Sci. 26, 4110 (1991).Google Scholar