Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-20T09:15:32.454Z Has data issue: false hasContentIssue false

Growth of Ternary Silicon Carbon Nitride as a New Wide Band Gap Material

Published online by Cambridge University Press:  10 February 2011

L. C. Cheni
Affiliation:
Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan
C. K. Chen
Affiliation:
Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan
D. M. Bhusari
Affiliation:
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
K. H. Chen
Affiliation:
Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
S. L. Wei
Affiliation:
Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan
Y. F. Chen
Affiliation:
Physics Department, National Taiwan University, Taipei, Taiwan
Y. C. Jong
Affiliation:
Physics Department, National Taiwan University, Taipei, Taiwan
D. Y. Lin
Affiliation:
Department of Electronic Engineering, National Taiwan Institute of Technology, Taipei, Taiwan
C. F. Li
Affiliation:
Department of Electronic Engineering, National Taiwan Institute of Technology, Taipei, Taiwan
Y. S. Huang
Affiliation:
Department of Electronic Engineering, National Taiwan Institute of Technology, Taipei, Taiwan
Get access

Abstract

Growth of pure crystalline carbon nitride (c-CN) with crystal sizes large enough to enable measurement of its properties has not been achieved so far. We report here that incorporation of silicon in the growth of CN can promote formation of large, well faceted crystallites. Crystalline thin films of SiCN have been grown by microwave plasma-enhanced chemical vapor deposition using CH4, N2, and SiH4 gases. Auger electron spectroscopy, scanning electron microscopies, and X-ray diffraction spectroscopy have been employed to characterize the composition, the morphology and the structure of the films. The new crystalline ternary compound (C; Si)xNy exhibits hexagonal structure and consists of a network wherein the Si and C are believed to be substitutional elements. While the N content of the compound is about 35%, the extent of Si substitution varies from crystal to crystal. In some crystals, the Si content can be as low as 10%. Optical properties of the SiCN compounds have been studied by photoluminescence (PL) and piezoreflectance (PzR) spectroscopies. From the PzR measurement, we determine the band gap of the new crystals to be around 3.8 eV at room temperature. From the PL measurement, it is found that the compounds have a strong subband-gap emission centered around 2.8 eV at room temperature, which can be attributed to the effect of defects containing in the crystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Liu, A. Y. and Cohen, M. L., Science 245, 841 (1989).Google Scholar
2. Liu, A. Y. and Wentzcovitch, R. M., Phys. Rev. B 50, 10362 (1994).Google Scholar
3. Ortega, J. and Sankey, O. F., Phys. Rev. B 51, 2624 (1995).Google Scholar
4. Guo, Y. and Goddard, W. A. III, Chem. Phys. Lett. 237, 72 (1995).Google Scholar
5. Badding, J. V. and Nesting, D. C, Chem. Mater. 8, 535 (1996).Google Scholar
6. Niu, C., Lu, Y. Z., and Lieber, C. M., Science 261, 334 (1993).Google Scholar
7. Li, D., Chung, Y. W., Wong, M. S., and Sproul, W. D., J. Appl. Phys. 74, 219 (1993).Google Scholar
8. Kumar, S. and Tansley, T. L., Solid State Commun. 88, 803 (1993).Google Scholar
9. Yu, K. M., Cohen, M. L., Haller, E. E., Hansen, W. L., Liu, A. Y., and Wu, I. C., Phys. Rev. B 49, 5034 (1994).Google Scholar
10. Marton, D., Boyd, K. J., Al-Bayati, A. H., Todorov, S. S., and Rabalais, J. W., Phys. Rev. Lett. 73, 118 (1994).Google Scholar
11. Ren, Z. M., Du, Y. C., Ying, Z. F., Qiu, Y. X., Xiong, X. X., Wu, J. D., and Li, F. M., Appl. Phys. Lett. 65, 1361 (1994).Google Scholar
12. Riviere, J. P., Texier, D., Delafond, J., Jaouen, M., Mathe, E. L., and Chaumond, J., Mater. Lett. 22, 115 (1995).Google Scholar
13. Chen, L. C., Yang, C. Y., Bhusari, D. M., Chen, K. H., Lin, M. C., Lin, J. C., and Chuang, T. J., Diamond and Related Materials 5, 514 (1996).Google Scholar
14. Bhusari, D. M., Chen, C. K., Chen, K. H., Chuang, T. J., Chen, L. C., and Lin, M. C., J. Mat. Res. 12, in press (1997).Google Scholar
15. Chen, L. C., Bhusari, D. M., Yang, C. Y., Chen, K. H., Chuang, T. J., Lin, M. C., Chen, C. K., and Huang, Y. F., Thin Solid Film, in press (1997).Google Scholar
16. Li, C. F., Lin, D. Y., Huang, Y. S., Chen, Y. F., and Tiong, K. K., J. Appl. Phys. 81, 400 (1997).Google Scholar
17. Cohen, M. L., Phys. Ser. T1, 5 (1982).Google Scholar
18. Varshni, Y. P., Physica 34, 149 (1967).Google Scholar
19. Lin, D. Y., Li, C. F., Huang, Y. S., Jong, Y. C., Chen, Y. F., Chen, L. C., Chen, C. K., Chen, K. H., and Bhusari, D. M. (submitted to Phys. Rev. B).Google Scholar