Published online by Cambridge University Press: 01 February 2011
Single-walled carbon nanotubes (SWCNTs) have been grown for the first time by microwave plasma-enhanced chemical vapor deposition (PECVD) at 800°C using methane as the precursor and bimetallic Mo/Co catalyst supported on MgO dispersed on a silicon wafer. The nanotubes grown consist of bundles, each composed of individual tubes of a single diameter associated with either metallic or semiconducting SWCNTs, based on characterization by Raman spectroscopy. Field-emission scanning electron microscopy and atomic force microscopy show that the bundles are relatively thin – 5 to 10 nm in diameter – and up to a few micrometers in length. The results are compared with those obtained on recently reported SWCNTs grown by radio frequency PECVD.