Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T07:12:51.722Z Has data issue: false hasContentIssue false

Growth of SiC Thin Films on (100) and (111) Silicon by Pulsed Laser Deposition Combined with a Vacuum Annealing Process

Published online by Cambridge University Press:  10 February 2011

Jipo Huang
Affiliation:
State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Metallurgy, Chinese Academy of Sciences, Shanghai, 200050, P. R.. China
Lianwei Wang
Affiliation:
State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Metallurgy, Chinese Academy of Sciences, Shanghai, 200050, P. R.. China
Jun Wen
Affiliation:
Department of Material Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R.. China
Yuxia Wang
Affiliation:
Department of Material Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R.. China
Chenglu Lin
Affiliation:
State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Metallurgy, Chinese Academy of Sciences, Shanghai, 200050, P. R.. China
Carl-Mikael Zetterling
Affiliation:
Royal Institute of Technology (KTH), Department of Electronics, Electrum 229, SE-16440, Kista-Stockholm, Sweden
Mikael Ostling
Affiliation:
Royal Institute of Technology (KTH), Department of Electronics, Electrum 229, SE-16440, Kista-Stockholm, Sweden
Get access

Abstract

Crystalline 3C-SiC thin films were successfully grown on (100) and (111) Si substrates by using ArF pulsed laser ablation from a SiC ceramic target combined with a vacuum annealing process. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were employed to study the effect of annealing on the structure of thin films deposited at 800°C. It was demonstrated that vacuum annealing could transform the amorphous SiC films into crystalline phase and that the crystallinity was strongly dependent on the annealing temperature. For the samples deposited on (100) and (111) Si, the optimum annealing temperatures were 980 and 920°C, respectively. Scanning electron microscope (SEM) micrographs exhibited different characteristic microstructure for the (100) and (111) Si cases, similar to that observed for the carbonization layer initially formed in chemical vapor deposition of SiC films on Si. This also showed the presence of the epitaxial relationship of 3C-SiC[100]//Si[100] and 3C-SiC[111]//Si[111] in the direction of growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Müller, G., KrÖtz, G., and Niemann, E., Sensors and Actuators A 43, 259(1994).10.1016/0924-4247(93)00684-VGoogle Scholar
2. Brown, D. M., Downey, E., Grezzo, M., Kretchmer, J., Krishnamurti, V., Hennessy, W. and Michon, G., Solid State Electronics 59 1531(1996).10.1016/0038-1101(96)00079-2Google Scholar
3. Palmour, J.W., Edmond, J. A., Kong, H. S. and Carter, C. H. Jr, Physica B 185, 461(1993).10.1016/0921-4526(93)90278-EGoogle Scholar
4. Sheng, S., Spencer, M. G., Tang, X., Zhou, P., Wongchotigul, K., Taylor, C. and Harris, G. L., Mat. Sci. Eng. B 46, 147(1997).10.1016/S0921-5107(96)01966-6Google Scholar
5. Matsunami, H., Nishino, S., and Ono, H., IEEE. Trans. Electron Devices 28, 1235(1981).10.1109/T-ED.1981.20556Google Scholar
6. Nishino, S., Suhara, H., Ono, H., and Matsunami, H., J. Appl. Phys. 61 4886(1987).10.1063/1.338355Google Scholar
7. Gao, Y., Edgar, J. H., Chaudhuri, J., Cheema, S. N., Sidorov, M. V., Braski, D. N., J. Crystal Growth 191 439(1998).10.1016/S0022-0248(98)00212-7Google Scholar
8. Wesch, W., Nucl. Instr. and Meth. in Phys. Res. B 116 305(1996).10.1016/0168-583X(96)00065-1Google Scholar
9. Cooper, J. A. Jr, Mat. Sci. Eng. B 44, 387(1997).10.1016/S0921-5107(96)01746-1Google Scholar
10. Golecki, I., Reidinger, F. and Marti, J., Appl. Phys. Lett., 60 1703(1992).10.1063/1.107191Google Scholar
11. Rimai, L., Ager, R., Weber, W.H. and Hangas, J., Appl. Phys. Lett., 59, 2266(1991).10.1063/1.106065Google Scholar
12. Rimai, L., Ager, R., Weber, W.H., Hangas, J., Samman, A. and Zhu, W., J. Appl. Phys. 77, 6601(1995).10.1063/1.359070Google Scholar
13. Balloch, M., Tench, R. J., Sielhause, W. J., Allen, M. J., Conor, A. L. and Olander, D. R., Appl. Phys. Lett., 57, 1540(1990).10.1063/1.103346Google Scholar
14. Capano, M. A., Walck, S. D. and Murray, P. T., Appl. Phys. Lett. 64, 3413(1994).10.1063/1.111257Google Scholar
15. Chen, Ming. Y. and Murray, P. Terrence., J. Mat. Sci. 25, 4929(1990).10.1007/BF01129963Google Scholar
16. Watanabe, A., Mukaida, M., Tsunoda, T. and Imai, Y., Thin Solid Films 300, 95(1997).10.1016/S0040-6090(96)09554-5Google Scholar
17. Kim, H.J. and Davis, R.F., J. Electrochem. Soc. 134, 2269(1987).10.1149/1.2100869Google Scholar