Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T06:56:59.147Z Has data issue: false hasContentIssue false

Growth of Nanosize and Colloid Particles by Controlled Addition of Singlets

Published online by Cambridge University Press:  17 March 2011

Vladimir Privman*
Affiliation:
Center for Advanced Materials Processing, Clarkson University, Potsdam, NY 13699-5820, U.S.A.
Get access

Abstract

We outline a theoretical framework for estimating the evolution of the particle size distribution in colloid and nanoparticle synthesis, when the primary growth mode is by externally controlled addition of singlet building blocks. The master equations, analyzed in the leading “non-diffusive” expansion approximation, are reduced to a set of easily numerically programmable relations that yield information on the time evolution of the particle size distribution.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Privman, V., Goia, D. V., Park, J. and Matijevic, E., J. Colloid Interf. Sci. 213, 36 (1999).Google Scholar
2. Park, J., Privman, V. and Matijevic, E., accepted for publication in J. Phys. Chem. B, online preprint: http://arxiv.org/ftp/cond-mat/papers/0102/0102079.pdf, online journal draft http://pubs.acs.org/isubscribe/journals/jpcbfk/asap/pdf/jp011306a.pdf (2001).Google Scholar
3. Matijevic, E., Ann. Rev. Mater. Sci. 15, 483 (1985).Google Scholar
4. Haruta, M. and Delmon, B., J. Chim. Phys. 83, 859 (1986).Google Scholar
5. Sugimoto, T., Adv. Colloid Interf. Sci. 28, 65 (1987).Google Scholar
6. Sugimoto, T., J. Colloid Interf. Sci. 150, 208 (1992).Google Scholar
7. Matijevic, E., Langmuir 10, 8 (1994).Google Scholar
8. Goia, D. V. and Matijevic, E., Colloids Surf. 146, 139 (1999).Google Scholar
9. LaMer, V. K. and Dinegar, R. H., J. Amer. Chem. Soc. 72, 4847 (1950).Google Scholar
10. LaMer, V. K., Ind. Eng. Chem. 44, 1270 (1952).Google Scholar
11. Dirksen, J. A. and Ring, T. A., Chem. Eng. Sci. 46, 2389 (1991).Google Scholar
12. Dirksen, J. A., Benjelloun, S. and Ring, T. A., Colloid Polym. Sci. 268, 864 (1990).Google Scholar
13. Ring, T. A., T. A., Powder Technol. 65, 195 (1991).Google Scholar
14. Schmid, G., Chem. Rev. 92, 1709 (1992).Google Scholar
15. Teranishi, T., Hosoe, M., Tanaka, T. and Miyake, M., J. Phys. Chem. 103, 3818 (1999).Google Scholar
16. Dongen, P. G. J. van and Ernst, M. H., J. Statist. Phys. 37, 301 (1984).Google Scholar
17. Randolph, A. D. and Larson, M. A., Theory of Particulate Processes (Academic Press, San Diego, 1988).Google Scholar
18. Brilliantov, N. V. and Krapivsky, P. L., J. Phys. A 24, 4787 (1991).Google Scholar
19. Krug, J. and Spohn, H., in Solids Far from Equilibrium, edited by Godreche, C. (Cambridge University Press, 1991).Google Scholar
20. Family, F. and Vicsek, T., Dynamics of Fractal Surfaces (World Scientific, Singapore, 1991).Google Scholar
21. Mozyrsky, D. and Privman, V., J. Chem. Phys. 110, 9254 (1999).Google Scholar
22. Schaefer, D. W., Martin, J. E., Wiltzius, P. and Cannell, D. S., Phys. Rev. Lett. 52, 2371 (1984).Google Scholar
23. Weiss, G. H., J. Statist. Phys. 42, 3 (1986).Google Scholar