Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T17:41:52.073Z Has data issue: false hasContentIssue false

Growth of MBE-Codeposited IrSi3 on Si(111) and Si(100)

Published online by Cambridge University Press:  15 February 2011

Gary A. Gibson
Affiliation:
Department of Physics, Optical Sciences Center, and Arizona Research Labs, University of Arizona, Tucson AZ 85721
Davis A. Lange
Affiliation:
Department of Physics, Optical Sciences Center, and Arizona Research Labs, University of Arizona, Tucson AZ 85721
Charles M. Falco
Affiliation:
Department of Physics, Optical Sciences Center, and Arizona Research Labs, University of Arizona, Tucson AZ 85721
Get access

Abstract

We have used Molecular Beam Epitaxy (MBE) to successfully grow films that are predominantly IrSi3 on both Si(111) and Si(100) substrates by codeposition of Si and Ir in a 3:1 ratio. Bragg-Brentano and Seemann-Bohlin x-ray diffraction reveal that polycrystalline IrSi3 films form as low as 450 °C. This is the lowest temperature yet reported for growth of this iridium silicide phase. These x-ray diffraction techniques, along with Transmission Electron Microscope (TEM) diffraction and in situ Low Energy Electron Diffraction (LEED), show that at higher deposition temperatures codeposition can form IrSi3 films on Si(111) that consist predominantly of a single epitaxial growth orientation. Ion beam channeling and x-ray rocking curves show that the epitaxial quality of IrSi3 films deposited on Si(111) is superior to that of IrSi3 films deposited on Si(100). We also present evidence for several new epitaxial IrSi3 growth modes on Si(111) and Si(100).

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tsaur, Bor-Yeu, Weeks, Melanie M., Trubiano, R., Pellegrini, Paul W., and Yew, T.-R., IEEE Electron Device Letters 9, 650(1988).CrossRefGoogle Scholar
2. Cantella, M. J., Davidson, N. C., Gylfphe, C. H., Mattia, J. P., and Tsaur, B. Y., SPIE 1071, 12 (1989).Google Scholar
3. Tsaur, B.Y., McNutt, M. J., Bredthauer, R.A. and Mattson, R. B., IEEE Electron Device Letters 10, 361 (1989).CrossRefGoogle Scholar
4. Yutani, N., Kimata, M., Denda, M., Iwade, S. and Tsubouchi, N., IEDM Proceedings 1987, 124 (1987).Google Scholar
5. Ohdomari, I., Kuan, T. S., and Tu, K. N., J. Appl. Phys. 50, 7020 (1979).CrossRefGoogle Scholar
6. Pellegrini, P.W., Golubovic, A., Luddington, C.E. and Weeks, M.M., IEDM Tech Digest 157, 93 (1982).Google Scholar
7. Tung, R. T., Phys. Rev. Lett. 52, 461 (1984).CrossRefGoogle Scholar
8. Murarka, S. P., J. Vac. Sci. Technol. 17, 775 (1980).CrossRefGoogle Scholar
9. Whittmer, M., Oelhafen, P., and Tu, K. N., Phys. Rev. B 35, 9073 (1987).CrossRefGoogle Scholar
10. Weiss, B. Z., Tu, K. N., and Smith, D. A., J. Appl. Phys. 59, 415 (1986).CrossRefGoogle Scholar
11. Mooney, J. M. and Silverman, J., IEEE Trans. Elect. Dev. 32, 33 (1985).CrossRefGoogle Scholar
12. Lin, T. L., Nieh, C. W., Hashimoto, Shin, and Xiao, Q. F., Thin Solid Films 184, 343 (1990).CrossRefGoogle Scholar
13. Lange, D. A., Gibson, G. A., and Falco, C. M., submitted to J. Appl. Physics.Google Scholar
14. Zur, A., McGill, T. C., and Nicolet, M. A., J. Appl. Phys. 57, 600 (1985).CrossRefGoogle Scholar
15. Gibson, G. A., Lange, D. A., and Falco, C. M., to be published.Google Scholar
16. Chu, J. J., Chen, L. J., and Tu, K. N., J. Appl Phys 63, 1163 (1988).CrossRefGoogle Scholar
17. Gibson, G. A., Lange, D. A., and Falco, C. M., to be published.Google Scholar