Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:14:26.741Z Has data issue: false hasContentIssue false

Growth of High Quality (In,Ga,Al)N/GaN Heterostructure Materials and Devices by Atmospheric Pressure MOCVD

Published online by Cambridge University Press:  15 February 2011

S. P. Denbaars
Affiliation:
Materials Departments, University of California, Santa Barbara, CA 93106, U.S.A.
S. Keller
Affiliation:
Electrical & Computer Engineering University of California, Santa Barbara, CA 93106, U.S.A.
B. P. Keller
Affiliation:
Electrical & Computer Engineering University of California, Santa Barbara, CA 93106, U.S.A.
Y. F. Wu
Affiliation:
Electrical & Computer Engineering University of California, Santa Barbara, CA 93106, U.S.A.
D. Kapolnek
Affiliation:
Materials Departments, University of California, Santa Barbara, CA 93106, U.S.A.
U. K. Mishra
Affiliation:
Electrical & Computer Engineering University of California, Santa Barbara, CA 93106, U.S.A.
Get access

Abstract

Using atmospheric pressure MOCVD we have obtained high quality InGaN/GaN and AlGaN/GaN heterostructure materials and devices. For nominally undoped 4 μm thick GaN films, we obtained 300 K mobilities of 780 cm2/Vs and an unintentional background impurity level of n300K = 6*1016 cm−3. For InGaN/GaN heterostructures we have obtained direct band-edge transitions with FWHM as narrow as 7.9 nm (59 meV) for 50Å thick In0.16Ga0.84N quantum wells at 300K, which is the among the best reported values. The quantum wells display energy shifts towards shorter wavelength with decreasing well thickness, and the shift agrees with predicted quantum effects. These materials have been incorporated into InGaN single quantum well LEDs that emit at 450 nm. In addition AlGaN/GaN heterostructure materials have been incorporated into HFETs and MODFETs. Gate-drain breakdown voltage well exceeding 100 V, and extrinsic transconductance gm of up to 140 mS/mm were realized in the MODFET.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Nakamura, N., Mukai, T., Senoh, M.; Appl. Phys. Lett. 64 (1994) 1687 Google Scholar
2 Akasaki, I., Amano, H., Murakami, H., Sassa, M., Kato, H., Manabe, K.; J. Cryst. Growth 128 (1993) 379 Google Scholar
3 Kahn, M. A., Chen, Q., Skogman, R. A., Kuznia, J. N.; Appl. Phys. Lett. 66 (1995) 2046 Google Scholar
4 Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matshushita, T., Kiyoku, H., and Sugimoto, Y., Jpn. J. Appl. Phys. 35 (1996) L74–L76.Google Scholar
5 Kapolnek, D., Wu, X. H., Heying, B., Keller, S., Keller, B. P., Mishra, U. K., DenBaars, S. P., and SPeck, J. S., Appl. Physics. Lett. 67 (1995) 1541.Google Scholar
6 Shimizu, M., Hiramatsu, K. and Sawaki, N., J. Cryst. Growth 145 (1994) 209 Google Scholar
7 Osamura, K., Naka, S., Murakami, Y.; J. Appl. Phys. 46 (1975) 3432 Google Scholar
8 Nakamura, S., J. Cryst. Growth 145 (1994) 911 Google Scholar
9 Welch, D. F., Wicks, G. W., and Eastman, L. F., Appl. Phys. Lett. 46 (1985) 991 Google Scholar
10 Krishnankutty, S., Kolbas, R. M., Kahn, M. A., Kuznia, J. N., van Hove, J. M. and Olson, D. T., J. Electron. Mat. 21 (1992) 609 Google Scholar
11 Wu, X. H., Keller, S., Keller, B. P., Mishra, U. K., DenBaars, S. P., and Speck, J. S., to be published in Appl Physics. Left.Google Scholar
12 Khan, M. Asif, Shur, Michael S., Kuznia, John N., Chen, Q., Burm, Jin and Schaff, William, Appl. Phys. Left. 66 (1995) 27 Google Scholar
13 Aktas, O., Wkim, , Fan, Z., Stengel, F., Botchkarev, A., Salvador, A., Sverdlov, B., Mohammad, S. N. and Morkoc, , IEDM, Tech. Digest, 205, Dec.10–13,1995 Google Scholar