Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-05T15:40:08.369Z Has data issue: false hasContentIssue false

Growth of Hexagonal Boron Nitride on Microelectronic Compatible Substrates

Published online by Cambridge University Press:  04 June 2015

Michael Snure
Affiliation:
Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, OH
Qing S. Paduano
Affiliation:
Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, OH
Get access

Abstract

Boron nitride has attracted a great deal of attention as a two dimensional (2D) insulator for substrate and gate dielectric applications in 2D electronics. Development of a scalable technique to grow mono- to few-layer h-BN on microelectronics compatible substrates is desirable. Work on the growth of atomically smooth BN and graphene on sapphire and Si is presented in this paper. Two approaches are described: i) growth of h-BN and graphene on Si and sapphire substrates using a catalyzing Cu thin film, and ii) low pressure metal organic chemical vapor deposition (MOCVD) growth on sapphire. In approach i) we discuss problems associated with the thermal instability of Cu at the interface with the substrate and show how the stability may be improved through the use of a thin Ni buffer layer or careful substrate selection. The correlation between Cu film morphology and h-BN (and graphene) quality is shown. In approach ii) we find two different growth modes, 3D island growth at low V/III ratios and self-terminating growth at high V/III ratios. Under self-terminating growth atomically smooth few-layer h-BN films are produced. Nitridation of the sapphire surface is found to promote this self-terminating growth by improving nucleation of BN on the substrate. Finally, we present results from the growth of graphene/h-BN on sapphire in a single process.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Novoselov, K. S., et al. Science 306, 666 (2004).CrossRefGoogle Scholar
Taniguchi, T., Sato, T., Utsumi, W., Kikegawa, T., and Shimomura, O., Diam. Relat. Matter. 6, 1806 (1997).CrossRefGoogle Scholar
Tao, O, Yuanping, C., Yuee, X., Kaike, Y., Zhigang, B., and Jianxin, Z., Nanotechnology 21, 245701 (2010).CrossRefGoogle Scholar
Balandin, A. A., Nat. Mater. 10, 569 (2011).CrossRefGoogle Scholar
Song, L., Ci, L., Lu, H., Sorokin, P. B., Jin, C., Ni, J., Kvashnin, A. G., Kvashnin, D. G., Lou, J., Yakobson, B. I., and Ajayan, P. M., Nano Lett. 10, 3209 (2010).CrossRefGoogle Scholar
Mayorov, A. et al. Nano Lett. 11, 2396 (2011).CrossRefGoogle Scholar
Chen, J. H., Jang, C., Xiao, S., Ishigami, M., Fuhrer, M. S., Nature Nanotech. 3, 206 (2008).CrossRefGoogle Scholar
Ishigami, M., Chen, J. H., Cullen, W. G., Fuhrer, M. S., Williams, E. D., Nano Lett. 7, 1643 (2007).CrossRefGoogle Scholar
Kim, K. K., Hsu, A., Jia, X., Kim, S. M., Shi, Y., Hofmann, M., Nezich, D., Rodriguez-Nieva, J. F., Dresselhaus, M., Placios, T., Kong, J., Nano Lett..12, 161 (2012).CrossRefGoogle Scholar
Li, X. S., Cai, W. W., An, J. H., Kim, S., Nah, J., Yang, D. X., Piner, R. D., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S. K., Colombo, L., Ruoff, R. S. Science 324, 1312 (2009).CrossRefGoogle Scholar
Ismach, A., Chou, H., Ferrer, D. A., Wu, Y., McDonnell, S., Floresce, C. H., Covacevich, A., Pope, C., Piner, R., Kim, M. J., Wallace, R. M., Colombo, L., and Ruoff, R. S., Nano 6, 6378 (2012).Google Scholar
Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., Ahn, J. H., Kim, P., Choi, J. Y., Hong, B. H., Nature 457, 706 (2009).CrossRefGoogle Scholar
Lu, J., Yeo, P. S. E., Zheng, Y., Xu, H., Gan, C. K., Sullivan, M. B., Neto, A. H. C., and Loh, K. P., J. Am. Chem. Soc. 135, 2368 (2013).CrossRefGoogle Scholar
Li, X., Cai, W., Colombo, L., Ruoff, R. S., Nano Lett. 9, 4268 (2009).CrossRefGoogle Scholar
Levendorf, M. P., Rulz-Vargas, C. S., Garg, S., and Park, J., Nano Lett. 9, 4479 (2009).CrossRefGoogle Scholar
Caneva, S. et al. Nano Lett. DOI: 10.1021/nl5046632 (2015).Google Scholar
Emtsev, K. V. et al. Nature Mat. 8, 203 (2009).CrossRefGoogle Scholar
Morean, E., Godey, S., Ferrer, F. J., Vingnaud, D., Wallart, X., Avila, J., Asensio, M. C., Bournel, F., Gallet, J. J., App. Phys. Lett. 97, 241907 (2010).CrossRefGoogle Scholar
Lin, Y., Dimitrakopoulos, C., Jenkins, K. A., Farmer, D. B., Chiu, H. Y., Grill, A., Avouris, Ph., Science 327, 662 (2010).CrossRefGoogle Scholar
Kedzierski, J, et al. IEEE Trans. Electron. Dev. 55, 2078 (2008).CrossRefGoogle Scholar
Hwang, J. et al. ACS Nano 7, 385 (2013).CrossRefGoogle Scholar
Tang, S., Ding, G., Xie, X., Chen, J., Wang, C., Ding, X., Huang, F., Lu, W., Jiang, M., Carbon 50, 329331 (2012).CrossRefGoogle Scholar
Shen, T., Gu, J. J., Xu, M., Wu, Y. Q., Bolen, M. L., Capano, M. A., Engel, L. W., Ye, P. D.. App. Phys. Lett. 95, 172105 (2009).CrossRefGoogle Scholar
Gannett, W., Regan, W., Watanabe, K., Taniguchi, T., Crommie, M. F., Zettl, A., App. Phys. Lett. 98, 242105 (2011).CrossRefGoogle Scholar
Nakamura, T., Electrochem, J.. Soc. 133, 1120 (1986).Google Scholar
Kobayashi, Y., Akasaka, T., Crystal Growth, J., 310 5044 (2008).CrossRefGoogle Scholar
Chubarov, M., Pedersen, H., Hogberg, H., Jensen, J., Henry, A., Cryst. Growth Des. 12, (2012) 3215.CrossRefGoogle Scholar
Paduano, Q. S. and Snure, M., Appl. Phys. Exp. 7, 071004, (2014).CrossRefGoogle Scholar
Nemanich, R. J., Solin, S. A., and Martin, R. M., Phys. Rev. B 23, 6348(1981).CrossRefGoogle Scholar
Spizzirri, P. G., Fang, J-H., Rubanov, S., Gauja, E., and Prawer, S.. arXiv preprint arXiv:1002.2692 (2010).Google Scholar
Gorbachev, R. V., Riaz, I., Nair, R. R., Jalil, R., Britnell, L., Belle, B. D., Hill, E. W., Novoselov, K. S., Watanabe, K., Taniguchi, T., Geim, A. K., Blake, P., Small 7, 465 (2011).CrossRefGoogle Scholar
Malard, L. M., Pimenta, M. A., Dresselhause, G., Dresselhaus, M. S., Physics Reports 473,51 (2009).CrossRefGoogle Scholar