Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T08:16:43.918Z Has data issue: false hasContentIssue false

Growth of GaN on Lithium Gallate Substrates for Development of a GaN Thin Compliant Substrate

Published online by Cambridge University Press:  10 February 2011

W. A. Doolittle
Affiliation:
Georgia Institute of Technology, School of Electrical and Computer Eng., Atlanta, GA 30332-0250 [email protected]
T. Kropewnicki
Affiliation:
Georgia Institute of Technology, School of Chemical Eng., Atlanta, GA 30332-0100
C. Carter-Coman
Affiliation:
Georgia Institute of Technology, School of Electrical and Computer Eng., Atlanta, GA 30332-0250 [email protected]
S. Stock
Affiliation:
Georgia Institute of Technology, School of Materials Science and Eng., Atlanta, GA 30332-0245
P. Kohl
Affiliation:
Georgia Institute of Technology, School of Chemical Eng., Atlanta, GA 30332-0100
N. M. Jokerst
Affiliation:
Georgia Institute of Technology, School of Electrical and Computer Eng., Atlanta, GA 30332-0250 [email protected]
R. A. Metzger
Affiliation:
Georgia Institute of Technology, School of Electrical and Computer Eng., Atlanta, GA 30332-0250 [email protected]
S. Kang
Affiliation:
Georgia Institute of Technology, School of Electrical and Computer Eng., Atlanta, GA 30332-0250 [email protected]
K. Lee
Affiliation:
Georgia Institute of Technology, School of Electrical and Computer Eng., Atlanta, GA 30332-0250 [email protected]
G. May
Affiliation:
Georgia Institute of Technology, School of Electrical and Computer Eng., Atlanta, GA 30332-0250 [email protected]
A. S. Brown
Affiliation:
Georgia Institute of Technology, School of Electrical and Computer Eng., Atlanta, GA 30332-0250 [email protected]
Get access

Abstract

The GaN on LGO system is the near perfect template (due to extremely high etch selectivity) for developing a viable thin film/compliant GaN substrate. Herein, we report on our efforts to grow GaN on LGO, including improvement of the microscopic surface morphology using pre-growthpretreatments. We also report on the first transferred thin film GaN substrate grown on LGO, transferred off of LGO, and mounted on GaAs. With this approach, (InAl)GaN alloys can be grown on thin GaN films, implementing a truly “compliant” substrate for the nitride alloy system. In addition, the flexibility of bonding to low cost Si, metal or standard ceramic IC packages is an attractive alternative to SiC and HVPE GaN substrates for optimizing cost verses thermal conductivity concerns. We have demonstratedhigh quality growth of GaN on LGO. X-Ray rocking curves of 145 arc-seconds are obtained with only a 0.28 μm thick film. We present data on the out of plane crystalline quality of GaN/LGO material. Likewise, we show 2 orders of magnitude improvement in residual doping concentration and factors of 4 improvement in electron mobility as compared to the only previously reported electrical data. We show substantial vendor to vendor and intra-vendor LGO material quality variations. We have also quantified the desorption of Ga and Li from the surface of LGO at typical growth temperatures using in situ desorption mass spectroscopy and XPS.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Moustakas, T.D., Mat. Res. Soc. Symp. Proc. Vol 395, 1996.Google Scholar
[2] Marezio, M., Acta Cryst., Vol.18, 1965, p. 481.Google Scholar
[3] Doolittle, W. A., Kropewnicki, T., Carter-comen, C., Stock, S., Kohl, P., Jokerst, N. M., Metzger, R. A., Kang, S., Lee, K., May, G., Brown, A. S., To be Published in J. Vac. Sci. Techn. Proc. of N. Amer. MBE Conference, Oct. 1997.Google Scholar
[4] Kung, P., Saxler, A., Zhang, X., Walker, D., Lavado, R., and Razeghi, M., Appl. Phys. Lett., Vol.69, No. 14, 30 Sept. 1996.Google Scholar
[5] Carter-Coman, C., Bicknell-Tassius, R., Brown, A. S., and Jokerst, N. M., Appl. Phys. Lett., March 31, 1997.Google Scholar
[6] Kropenwicki, T., Doolittle, W. A., Carter-Coman, C., Kang, S., Kohl, P., Brown, A. S., Submitted to J. Elec. Chem. Society.Google Scholar
[7] Johnson, M. A. L., Hughes, W. C., Rowland, W. H. Jr., Cook, J. W. Jr., Schetzina, J. F., Leonard, M., Kong, H. S., Edmund, J. A., Zavada, J., J. Cryst. Growth, Vol.175/176, 1997, p. 7278.Google Scholar
[8] Johnson, M. A. L., Shizuo, Fujita, Rowland, W. H. Jr., Bowers, K. A., Hughes, W. C., He, Y. W., Masry, N. A. El, Cook, J. W. Jr., Schetzina, J. F., Ren, J., Edmund, J. A., Sol. St. Elect., Vol.41, No. 2, 1997, p. 213218.Google Scholar
[9] Kryliouk, O. M., Dann, T. W., Anderson, T. J., Maruska, H. P., Zhu, L. D., Daly, J. T., Lin, M., Norris, P., Chai, H. T., Kisker, D. W., Li, J. H., Jones, K. S., Mat. Res. Symp. Proc. Vol.449, 1997, p. 123.Google Scholar
[10] Yasuo, Tazoh, Takao, lshii, Shintaro, Miyazawa, Jpn. J. Appl. Phys., Vol.36, Part 2, No. 6B, 15 June 1997, pp. L746–L749.Google Scholar
[11] To be submitted to Appl. Phys. Lett.Google Scholar