Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T00:51:29.705Z Has data issue: false hasContentIssue false

Growth of Gallium Nitride Textured Films and Nanowires on Polycrystalline Substrates at sub-Atmospheric Pressures

Published online by Cambridge University Press:  21 March 2011

Hari Chandrasekaran
Affiliation:
Department of Chemical Engineering University of Louisville Louisville, KY 40292
Mahendra K. Sunkara
Affiliation:
Department of Chemical Engineering University of Louisville Louisville, KY 40292
Get access

Abstract

Textured gallium nitride (GaN) films were grown on polished, polycrystalline and amorphous substrates in sub-atmospheric pressures, by direct nitradation of a thin molten gallium films using electron cyclotron resonance (ECR) microwave nitrogen plasma. C-plane texturing was achieved, independent of the substrate crystallinity. Single crystal quality GaN nanowires with diameters ranging from 40-50 nm were also synthesized using direct nitridation of thin gallium films with nitrogen plasma. Scanning electron microscopy (SEM), X-ray Diffraction (XRD), Energy Dispersive Spectroscopy (EDS) and Cross-sectional transmission electron microscopy (CS-TEM), high-resolution TEM (HRTEM) and Micro-Raman spectroscopy were used to characterize the synthesized gallium nitride films and GaN nanowires.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Corresponding Address: [email protected].

References

1. Akasaki, I., Amano, H., Journal of the Electrochemical Society 141(8)), 2266 (1994).Google Scholar
2. Binari, S. C., The Electrochemical Society Meeting Abstracts 96(1)), 409 (1996).Google Scholar
3. Razeghi, M., Rogalski, A., Journal of Applied Physics 79(10)), 7433 (1996).Google Scholar
4. Matloubian, M., Gershenzon, M., Journal of Electronic Materials 14, 633 (1985).Google Scholar
5. Foxon, C. T., Cheng, T. S., Novikov, S. V., et al., Journal of Crystal Growth 150(1-4), 892 (1995).Google Scholar
6. Marchand, H., Ibbetson, J. P., Fini, P. T., Wu, X. H., Rosner, S. J., Keller, S., Speck, J. S., Mishra, U. K., DenBaars, S. P., Sol. St. Electr. (1), 0 (1999).Google Scholar
7. Thomson, D. B., Gehrke, T., Linthicum, K. J., Rajagopal, P., Davis, R. F., J. Nitride Semicond. Res. 4S1, G3.37 (1999).Google Scholar
8. Porowski, S., et.al, J. Crystal Growth 66 (1984) 110 Google Scholar
9. Molnar, R. J., Götz, W., Romano, L. T., Johnson, N. M., J. Crystal Growth 178(1/2), 147 (1997).Google Scholar
10. Argoitia, A., Hayman, C. C., Angus, J. C., Wang, L., Dyck, J. S., Kash, K., Applied Physics Letters 70, 179 (1997).Google Scholar
11. Argoitia, A., Angus, J. C., et.al. MRS Internet J. Nitride Semicond. Res. 4S1, G3.23 (1999).Google Scholar
12. Toy, C., Scott, W. D., J. Mat. Sci. 32, 3243 (1997)10.1023/A:1018671222266Google Scholar
13. He, M., Zhou, P., Mohammad, S. N., et. al., J. of Cryst. Growth 231 (2001) 357.Google Scholar
14. Davis, R. F., Sitar, Z., et al., J. Crystal Growth 208, (2000)100106.Google Scholar
15. Huang, Y., Duan, X., Wei, Q., and Lieber, C. M., Science, Jan 26 2001: 630633 Google Scholar