Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T06:32:38.878Z Has data issue: false hasContentIssue false

Growth of GaAs/AlGaAs Quantum Dots Using Self-Organized InP Stressors

Published online by Cambridge University Press:  10 February 2011

M. C. Hanna
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401
Z. H. Lu
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401
A. F. Cahill
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401
M. J. Heben
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401
A. J. Nozik
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401
Get access

Abstract

GaAs quantum dots were formed in a near surface quantum well (QW) by producing lateral confinement with self-organized InP stressors grown in situ by metal organic chemical vapor deposition (MOCVD). We report here the influence of growth conditions on InP island formation on AlGaAs/GaAs single QW structures and also the influence of the QW structure on the optical properties of the GaAs quantum dots. We observe strong photoluminscence up to room temperature from the strain-induced quantum dots with energy redshifts of 70 meV below the QW peak.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Steigerwald, M.L., Brus, L.E., Annu. Rev. Mater. Sci 19, 471 (1989).Google Scholar
2. Micic, O.I., et al., J. Phys. Chem. 99, 7754 (1995).Google Scholar
3. Leonard, D., Krishnamurthy, M., Reaves, C.M., Denbaars, S.P., Petroff, P.M., Appl. Phys. Lett. 63, 3203 (1993).Google Scholar
4. Ahopelto, J., Yamaguchi, A.A., Nishi, K., Usui, A., Sakaki, H., Jpn. J. Appl. Phys. 32, L32 (1993).Google Scholar
5. Moison, J.M., Houzay, F., Barthe, F., Leprince, L., Andre, E., O. Vatel, Appl. Phys. Lett. 64, 196 (1994).Google Scholar
6. Carlsson, N., Seifert, W., Petersson, A., Castrilo, P., Pistol, M.E., Samuelson, L., Appl. Phys. Lett. 65, 3093 (1994).Google Scholar
7. Grundmann, M., et al., Phys. Stat. Sol. B 188, 249 (1995).Google Scholar
8. Eaglesham, D.J., Cerullo, M., Phys. Rev. Lett. 64, 1943 (1990).Google Scholar
9. Guha, S., Madhukar, A., Rajkumar, K.C., Appl. Phys. Lett. 57, 2110 (1990).Google Scholar
10. Snyder, C.W., Orr, B.G., Kessler, D., Sander, L.M., Phys. Rev. Lett. 66, 3032 (1991).Google Scholar
11. Yamaguchi, A.A., Ahopelto, J., Nishi, K., Usui, A., Akiyama, H., Sakaki, H., Inst. Phys. Conf. Ser. 129, 341 (1992).Google Scholar
12. Xie, Q., et al., J. Vac. Sci. Technol. B 13, 642 (1995).Google Scholar
13. Kash, K., et al., Appl. Phys. Lett. 55, 681 (1989).Google Scholar
14. Kash, K., Mahoney, D.D., Van der Gaag, B.P., Gozdz, A.S., Harbison, J.P., Florez, L.T., J. Vac. Sci. Technol. B 10, 2030 (1992).Google Scholar
15. Tan, I.H., Mirin, R., Jayaraman, V., Shi, S., Hu, E., Bowers, J., Appl. Phys. Lett. 61, 300 (1992).Google Scholar
16. Sopanen, M., Lipsanen, H., Ahopelto, J., Appl. Phys. Lett. 66, 2364 (1995).Google Scholar
17. Lipsanen, H., Sopanen, M., Ahopelto, J., Phys. Rev. B 51, 13868 (1995).Google Scholar
18. Tulkki, J., Heinamaki, A., Phys. Rev. B 52, 8239 (1995).Google Scholar
19. Reaves, C.M., Bressler-Hill, V., Varma, S., Weinberg, W.H., DenBaars, S.P., Sur. Sci 326, 209 (1995).Google Scholar
20. Krishnamurthy, M., Drucker, J.S., Venables, J.A., J. Appl. Phys. 69, 6461 (1991).Google Scholar
21. Olson, J.M., Blakeslee, A.E., Al-Jassim, M.M., Crystal Properties and Preparation 21, 59 (1989).Google Scholar
22. Zhang, Y., et al., Phys. Rev. B 51, 13303 (1995).Google Scholar