Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T07:36:27.633Z Has data issue: false hasContentIssue false

Growth of Diamond on Sapphire by Pulsed Laser Ablation under Oxygen Atmosphere

Published online by Cambridge University Press:  10 February 2011

M. Yoshimoto
Affiliation:
Materials & Structures Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori, Yokohama 226-8503, Japan, ( [email protected] )
Y. Hishitani
Affiliation:
Materials & Structures Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori, Yokohama 226-8503, Japan, ( [email protected] )
H. Maruta
Affiliation:
Materials & Structures Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori, Yokohama 226-8503, Japan, ( [email protected] )
H. Koinuma
Affiliation:
Materials & Structures Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori, Yokohama 226-8503, Japan, ( [email protected] )
T. Tachibana
Affiliation:
Electronics & Information Technology Laboratory, Kobe Steel LTD, Takatsukadai, Nishi-ku, Kobe 651- 2271, Japan
S. Nishio
Affiliation:
Materials & Structures Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori, Yokohama 226-8503, Japan, ( [email protected] )
M. Kakihana
Affiliation:
Materials & Structures Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori, Yokohama 226-8503, Japan, ( [email protected] )
Get access

Abstract

We examined the possibility of nucleation and growth of diamond via a hydrogen-free vapor phase route of pulsed laser ablation of a graphite target in a low-pressure pure oxygen atmosphere. The present evidences from microscopic, diffraction and spectroscopic techniques indicate that high-quality (111)-oriented diamond crystals could be nucleated and grown on ultra smooth sapphire (single-crystal α - A12O3)substrates at the temperatures lower than 600°C under the optimized growth conditions of oxygen pressure (around 0.15 Torn) and laser ablation (pulsed laser fluence of 3 x 108 W/cm2 at 5 Hz).

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Spitsyn, B.V. et al., J. Cryst. Growth 52, p. 219 (1981).Google Scholar
2. Kamo, M. et al., J.Cryst. Growth 62, p. 642 (1983).Google Scholar
3. Okano, K. et al., Nature 381, p. 140 (1996).Google Scholar
4. Badziag, P. et al., Nature 343, p. 244 (1990).Google Scholar
5. Lambrecht, W.R.L. et al., Nature 364, p. 607 (1993).Google Scholar
6. Butler, J.E. & Woodin, R.L., Phil. Trans. R. Soc. London A 342, p. 209 (1993).Google Scholar
7. Angus, J.C. et al., Phil. Trans. R. Soc. London A 342, p. 195 (1993).Google Scholar
8. Yoshimoto, M. et al., Jpn. J. Appl. Phys. 34, p. L688 (1995).Google Scholar
9. Chen, H. et al. , J. AppI. Phys. 76, p. 8113 (1994).Google Scholar
10. Polo, M.C. et al. , Appl. Phys. Lett. 67, p. 485 (1995).Google Scholar
11. Yoshimoto, M. et al., Appl. Phys. Lett. 67, p. 2615 (1995).Google Scholar
12. Yoshimoto, M. et al., Mat. Res. Soc. Proc. 401, p. 21 (1996).Google Scholar
13. Tachibana, T. et al. , Phys. Rev. B 56, p. 15967 (1997).Google Scholar