Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T22:44:54.987Z Has data issue: false hasContentIssue false

Growth of Device-Quality Homoepitaxial Diamond Thin Films

Published online by Cambridge University Press:  26 February 2011

M. W. Geis*
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology Lexington, MA 02173–9108
Get access

Abstract

Diamond has an electric-field breakdown 20 times that of Si and GaAs, and a saturated velocity twice that of Si. This results in a predicted cut off frequency for high-power diamond transistors 40 times that of similar devices made of Si or GaAs. Boron is the only known impurity that can be used to lightly dope diamond. This p-type dopant has an activation energy of 0.3 to 0.4 eV, which results in high-resistivity material that is undesirable for devices. However, heavily boron doped diamond has a very small activation energy and a low resistivity and is of device quality. Transistors can be designed that use only undoped and heavily doped diamond. One of the steps in a device fabrication sequence is homoepitaxial diamond growth. Lightly and heavily doped homoepitaxial diamond films were characterized by scanning and transmission electron microscopy, x-ray diffraction, measurements of resistivity as a function of temperature, and secondary ion mass spectroscopy. It was found that under appropriate growth conditions these films are of device quality.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Liao, S. Y., Microwave Devices and Circuits (Prentice-Hall, Englewood Cliffs, N.J., 1985), pp. 302304.Google Scholar
2. Sze, S. M. and Gibbons, G., Appl. Phys. Lett. 8, 111 (1966).Google Scholar
3. Bogdanov, A. V., Vikulin, I. M., and Bogdanova, T. V., Sov. Phys. Semicond. 16, 720 (1982).Google Scholar
4. Bazhenov, V. K., Vikulin, I. M., and Gonar, A. G., Soy. Phys. Semicond. 19, 829 (1985).Google Scholar
5. Konoirova, E. A., Kuznetsov, Yu. A., Sergienko, V. F., Tkachenko, S. D., Tsikunov, A. V., Sov. Phys. Semicond. 17, 146 (1983).Google Scholar
6. Collins, A. T., Semicond. Sci. Tech. 4, 605 (1989).Google Scholar
7. Collins, A. T. and Lightowlers, E. C., in The Properties of Diamond, ed. Field, J. E. (Academic Press, New York, 1979), pp. 80105.Google Scholar
8. Irvin, J. C., Bell Syst. Tech. J. 41, 387 (1962).Google Scholar
9. Efermow, N. N., Geis, M. W., Flanders, D. C., Lincoln, G. A., and Economou, N. P., J. Vac. Sci. Technol. B 3, 416 (1985).Google Scholar
10. Moazed, K. L., Nguyen, R., and Zeider, J. R., IEEE Electron Device Lett. EDL–7, 350 (1988).Google Scholar
11. Geis, M. W., Rothschild, M., Kunz, R. R., Aggarwal, R. L., Wall, K. F., Parker, C. D., McIntosh, K. A., Efremow, N. N., Zayhowski, J. J., and Ehrlich, D. J., Appl. Phys. Lett. 55, 2295 (1989).Google Scholar
12. Derjaguin, B. V., Spitsyn, B. V., Goridetsky, A. E., Zakharov, A. P., Bouilov, L. L., and Sleksenko, A. E., J. Cryst. Growth 31, 44 (1975).Google Scholar
13. Kamo, M., Sato, Y., Matsumoto, S., and Setaka, N., J. Cryst. Growth 62, 642 (1983).Google Scholar
14. Geis, M. W., in the Proceedings of the SDIO/IST-ONR Diamond Technology Initiative Symposium (Crystal City, VA, 1989).Google Scholar
15. Geis, M. W., Gregory, J. A., and Pate, B. B., submitted to IEEE Trans. Electron Devices.Google Scholar
16. Okano, K., Naruki, H., Akiba, Y., Kurosu, T., lida, M., Hirose, Y., and Nakamura, T., Jpn. J. Appl. Phys. 28, 1066 (1989).Google Scholar
17. Badzian, A. R. and Badzian, T., in the Proceedings of the SDIO/IST-ONR Diamond Technology Initiative Symposium (Crystal City, VA, 1989).Google Scholar
18. Rothschild, M., Arnone, C., and Ehrlich, D. J., J. Vac. Sci. Technol. B 4, 310 (1986).Google Scholar
19. The SIMS was performed by Charles Evans and Associates, 301 Cheapeake Drive, Redwood, CA 94063.Google Scholar