Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T11:08:40.256Z Has data issue: false hasContentIssue false

Growth of detector-grade CZT by Traveling Heater Method (THM): An advancement

Published online by Cambridge University Press:  12 October 2011

U. N. Roy
Affiliation:
FLIR Radiation Inc., 100 Midland Road, Oak Ridge, TN 37830
S. Weiler
Affiliation:
FLIR Radiation Inc., 100 Midland Road, Oak Ridge, TN 37830
J. Stein
Affiliation:
FLIR Radiation Inc., 100 Midland Road, Oak Ridge, TN 37830
M. Groza
Affiliation:
Department of Physics, 1000, 17th Avenue North, Fisk University, Nashville, TN 37208
A. Burger
Affiliation:
Department of Physics, 1000, 17th Avenue North, Fisk University, Nashville, TN 37208
A. E. Bolotnikov
Affiliation:
Brookhaven National Laboratory, Upton, NY 11793
G. S. Camarda
Affiliation:
Brookhaven National Laboratory, Upton, NY 11793
A. Hossain
Affiliation:
Brookhaven National Laboratory, Upton, NY 11793
G. Yang
Affiliation:
Brookhaven National Laboratory, Upton, NY 11793
R. B. James
Affiliation:
Brookhaven National Laboratory, Upton, NY 11793
Get access

Abstract

In this present work we report the growth of Cd0.9Zn0.1Te doped with In by a modified THM technique. It has been demonstrated that by controlling the microscopically flat growth interface, the size distribution and concentration of Te inclusions can be drastically reduced in the as-grown ingots. This results in as-grown detector-grade CZT by the THM technique. The three-dimensional size distribution and concentrations of Te inclusions/precipitations were studied. The size distributions of the Te precipitations/inclusions were observed to be below the 10-μm range with the total concentration less than 105 cm-3. The relatively low value of Te inclusions/precipitations results in excellent charge transport properties of our as-grown samples. The (μτ)e values for different as-grown samples varied between 6-20 x10-3 cm2/V. The as-grown samples also showed fairly good detector response with resolution of ∼1.5%, 2.7% and about 3.8% at 662 keV for quasi-hemispherical geometry for detector volumes of 0.18 cm3, 1 cm3 and 4.2 cm3, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chen, H., Awadalla, S. A., Iniewski, K., Lu, P. H., Harris, F., Mackenzie, J., Hasanen, T., Chen, W., Redden, R., Bindley, G., Kuvvetli, Irfan, Jørgensen, Carl Budtz, Luke, P., Amman, M., Lee, J. S., Bolotnikov, A. E., Camarda, G. S., Cui, Y., Hossain, A. and James, R. B., J. Appl. Phys. 103, 014903 (2008).Google Scholar
2. Awadalla, S. A., Chen, H., Mackenzie, J., Lu, P., Iniewski, K., Marthandam, P., Redden, R., Bindley, G., He, Z. and Zhang, F., J. Appl. Phys. 105, 114910 (2009).Google Scholar
3. El Mokri, A., Triboulet, R., Lusson, A., Tromnos-Carli, A. and Didier, G., J. Cryst. Growth 138, 168 (1994).Google Scholar
4. Chen, H., Awadalla, S. A., Mackenzie, J., Redden, R., Bindley, G., Bolotnikov, A. E., Camarda, G. S., Carini, G. and James, R. B., IEEE Transactions on Nuclear Science 54, 811 (2007).Google Scholar
5. Schoenholz, R., Dian, R. and Nitsche, R., J. Cryst. Growth 72, 72 (1985).Google Scholar
6. Yang, G., Bolotnikov, A. E., Cui, Y., Camarda, G. S., Hossain, A. and James, R. B., J. Cryst. Growth 311, 99 (2008).Google Scholar
7. Bolotnikov, A. E., Camarda, G. S., Carnini, G. A., Cui, Y., Li, L. and James, R. B., Nucl. Instr. Meth. Phys. Res. A 571, 687 (2007).Google Scholar
8. Bale, D. S., J. Appl. Phys. 107, 014519 (2010).Google Scholar
9. Roy, U. N., Gueorguiev, A., Weiler, S. and Stein, J., J. Cryst. Growth 312, 33 (2010).Google Scholar
10. Bolotnikov, A. E., A-Jabbar, N., Babalola, O. S., Camarda, G. S., Cui, Y., Hossain, A., Jackson, E. M., Jackson, H. C., James, J. A., Kohman, K. T., Luryi, A. L. and James, R. B., IEEE Trans. on Nucl. Sci. 55, 2757 (2008).Google Scholar
11. Bolotnikov, A. E., Babalola, O. S., Camarda, G. S., Cui, Y., Egarievwe, S. U., Hawrami, R., Hossain, A., Yang, G. and James, R. B., IEEE Trans. on Nucl. Science 57, 910 (2010).Google Scholar
12. Bolotnikov, A. E., Camarda, G. S., Carini, G. A., Cui, Y., Kohman, K. T., Li, L., Salomon, M. B. and James, R. B., IEEE Trans. on Nucl. Science 54, 821 (2007).Google Scholar
13. Toney, J. E., Brunett, B. A., Schlesinger, T. E., Van Scyoc, J. M., James, R. B., Schieber, M., Goorsky, M., Yoon, H., Eissler, E., and Johnson, C., Nucl. Instrum. Methods A 380, 132 (1996).Google Scholar
14. Schlesinger, T. E., Toney, J. E., Yoon, H., Lee, E. Y., Brunett, B. A., Franks, L. and James, R. B., Materials Sc. and Engr. Reports 32, 103 (2001).Google Scholar
15. Yang, G., Jie, W., Li, Q., Wang, T., Li, G. and Hua, H., J. Cryst. Growth 283, 431 (2005).Google Scholar