Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T20:18:30.411Z Has data issue: false hasContentIssue false

Growth of Cubic GAN on (001) GAAS

Published online by Cambridge University Press:  21 February 2011

O. Brandt
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, D-10117 Berlin, Germany, E-mail: [email protected]
H. Yang
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, D-10117 Berlin, Germany, E-mail: [email protected]
A. Trampert
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, D-70569 Stuttgart, Germany
K. H. Ploog
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, D-10117 Berlin, Germany, E-mail: [email protected]
Get access

Abstract

We present a study of the growth of cubic GaN films on (001) GaAs by molecular beam epitaxy. Our investigations focus on the nucleation stage as well as on the subsequent growth of GaN. The phenomenon of epitaxial growth at this extreme mismatch (20%) is demonstrated to arise from a coincidence lattice between GaAs and GaN. The presence of a high-density of stacking faults in the GaN layer is explained within this understanding as being a natural consequence of the coalescence of perfectly relaxed nuclei. We furthermore analyze the growth kinetics of GaN via the surface reconstruction transitions observed upon an impinging Ga flux, from which we obtain both the desorption rate of Ga as well as the diffusion coefficient of Ga adatoms on the Ga-stabilized GaN surface. The diffusivity of Ga is found to be very low at the growth temperatures commonly used during molecular beam epitaxy, which provides an explanation for the microscopic surface roughness observed on our samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Metzger, R.A., in Compound Semiconductor, edited by Meyer, M., Vol. 1, (Franklin Publishing, Saint Paul, 1995), p. 28.Google Scholar
2 Paisley, M.J., Sitar, Z., Posthill, J.B., and Davis, R.F., J. Vac. Sci. Technol. A 7, 701 (1989); S. Strite, J. Ruan, Z. Li, A. Salvador, H. Chen, D.J. Smith, W.J. Choyke, and H. Morkoç, J. Vac. Sci. Technol. B 9, 1924 (1991); T. Lei, T.D. Moustakas, R.J. Graham, Y. He, and S.J. Berkowitz, J. Appl. Phys. 71, 4933 (1992); R.C. Powell, N.-E. Lee, Y.- W. Kim, and J.E. Greene, J. Appl. Phys. 73, 189 (1993); H. Liu, A.C. Vrenkel, J.G. Kim, and R.M. Park, J. Appl. Phys. 74, 6124 (1993), T.S Cheng, L.C. Jenkins, S.E. Hooper, C.T. Foxon, J.W. Orton, and D.E. Lacklison, Appl. Phys. Lett. 66, 1509 (1995).Google Scholar
3 Yoshida, S., Misawa, S. and Gonda, S., Appl. Phys. Lett. 42, 427 (1983); H. Amano, N. Sawaki, I. Akasaki and Y. Toyoda, Appl. Phys. Lett. 48, 353 (1986); M. J. Paisley and R. F. Davis, J. Crystal Growth 127, 136 (1993); J. N. Kuznia, M. Asif Khan, D. T. Olson, R. Kaplan and J. Freitas, J. Appl. Phys. 73, 4700 (1993).Google Scholar
4 Brandt, O., Yang, H., Jenichen, B., Suzuki, Y., Däweritz, L., and Ploog, K.H., Phys. Rev. B 52, R2253 (1995).Google Scholar
5 Peng, L.M. and Whelan, M.J., Acta. Cryst. A 47, 95 (1991).Google Scholar
6 Lagally, M.G., Savage, D.E., and Tringides, M.C., in Reflection high-energy electron diffraction and reflection electron imaging of surfaces, edited by Larsen, P.K. and Dobson, P.J, (Plenum Press,New York, 1988), NATO ASI Series B Vol. 188, p. 139; W. Moritz, ibid., p. 175.Google Scholar
7 Neave, J.H., Dobson, P.J., Joyce, B.A., and Zhang, J., Appl. Phys. Lett. 47,100 (1985).Google Scholar
8 Yang, M.H. and Flynn, C.P., Phys. Rev. Lett. 62, 2476 (1989).Google Scholar