Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T07:58:23.586Z Has data issue: false hasContentIssue false

Growth of Co Nanoclusters on SiC Honeycomb Templates

Published online by Cambridge University Press:  21 March 2011

Wei Chen
Affiliation:
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543
Kian Ping Loh
Affiliation:
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543
Hai Xu
Affiliation:
Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542
A.T.S. Wee
Affiliation:
Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542
Get access

Abstract

A honeycomb-like SiC reconstructed surface with regular, periodic porosity in the nano-scale range has been used as an effective template for the formation of monodispersed Co nanoclusters. In-situ scanning tunneling microscopy (STM) was used to study the nucleation process of the Co nanoclusters on this template. The deposition of Co at different substrate temperature was investigated by STM. It is found that the failure in the deposition of Co nanoclusters on the SiC honeycomb template with substrate temperatures higher than room temperature (RT) might be due to the high desorption rate of the adsorbed Co atoms.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Barth, J. V., Weckesser, J., Cai, C., Günter, P., Bürgi, L., Jeandupeux, O., and Kern, K., Angew. Chem. Int. Ed. 39, 1230 (2000).Google Scholar
[2] Weckesser, J., Vita, A. De, Barth, J.V., Cai, C., and Kern, K., Phys. Rev. Lett. 87, 096101 (2001).Google Scholar
[3] Spillmann, H., Dmitriev, A., Lin, N., Messina, P., Barth, J. V., and Kern, K., J. Am. Chem.Soc. 125, 10725 (2003).Google Scholar
[4] Barth, J. V., Weckesser, J., Trimarchi, G., Vladimirova, M., Vita, A. De, Cai, C., Brune, H., Günter, P., and Kern, K., J. Am. Chem.Soc. 124, 7991 (2002).Google Scholar
[5] Feyter, S. De, Gesquière, A., Klapper, M., Mullen, K., and Schryver, F. C. De, Nano. letter. 3, 1485 (2003).Google Scholar
[6] Berner, S., Wild, M. de, Ramoino, L., Ivan, S., Baratoff, A., Güntherodt, H.-J., Suzuki, H., Schlettwein, D., and Jung, T. A., Phys. Rev. B. 68, 115410 (2003).Google Scholar
[7] Theobald, J. A., Oxtoby, N. S., Phillips, M. A., Champness, N. R., and Beton, P. H., Nature 424, 1029 (2003).Google Scholar
[8] Brune, H., Giovannini, M., Bromann, K., and Kern, K., Nature 394, 451 (1998).Google Scholar
[9] Corso, M., Auwärter, W., Muntwiler, M., Tamai, A., Greber, T., and Osterwalder, J., Science 303, 217 (2004).Google Scholar
[10] Wu, K. H., Fujikawa, Y., Nagao, T., Hasegawa, Y., Nakayama, K. S., Xue, Q. K., Wang, E. G., Briere, T., Kumar, V., Kawazoe, Y., Zhang, S. B., and Sakurai, T., Phys. Rev. Lett. 91, 126101 (2003).Google Scholar
[11] Li, J. L., Jia, J. F., Liang, X. J., Liu, X., Wang, J. Z., Xue, Q. K., Li, Z. Q., Tse, J. S., Zhang, Z. Y., and Zhang, S. B., Phys. Rev. Lett. 88, 066101 (2002).Google Scholar
[12] Lai, M. Y., and Wang, Y. L., Phys. Rev. B. 64, 241404 (2001).Google Scholar
[13] Kotlyar, V. G., Zotov, A. V., Saranin, A. A., Kasyanova, T. V., Cherevik, M. A., Pisarenko, I. V., and Lifshits, V. G., Phys. Rev. B. 66, 165401 (2002).Google Scholar
[14] Chen, W., Loh, K. P., Xu, H., and Wee, A. T. S., Appl. Phys. Lett. 84, 281 (2004).Google Scholar
[15] Chen, W., Xie, X., Xu, H., Wee, A. T. S., and Loh, K. P., J. Phys. Chem. B. 107, 11597 (2003).Google Scholar
[16] Johansson, L.I., Owman, Fredrik, and Martensson, Per Phys. Rev. B 53, 13793 (1996).Google Scholar
[17] Owman, F., Mårtensson, P., Surf. Sci. 369, 126 (1996).Google Scholar