Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-20T06:43:41.740Z Has data issue: false hasContentIssue false

Growth of Carbon Nanotubes Using Uniformly Distributed Cobalt Nanoparticles as Catalyst: Controlled Growth and Structural Characterization

Published online by Cambridge University Press:  01 February 2011

Yoon Huh
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305–701, Republic of Korea
Jeong Yong Lee*
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305–701, Republic of Korea
Sang Kyu Choi
Affiliation:
Department of Nanotechnology, Hanyang University, Seoul 133–791, Republic of Korea
Cheol Jin Lee
Affiliation:
Department of Nanotechnology, Hanyang University, Seoul 133–791, Republic of Korea
*
Get access

Abstract

We have controllably grown carbon nanotubes using uniformly distributed cobalt nanoparticles as catalyst. Cobalt nanoparticles with a uniform size were synthesized by chemical reaction and colloidal solutions including the cobalt nanoparticles were prepared. The cobalt nanoparticles were uniformly distributed on silicon substrates by a spin-coating method. Carbon nanotubes with a uniform diameter were synthesized on the cobalt nanoparticles by thermal chemical vapor deposition of acetylene gas. The density and vertical alignment of carbon nanotubes could be controlled by adjusting the density of Co nanoparticles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iijima, S., Nature 354, 56 (1991).Google Scholar
2. Ajayan, P. M., Stephan, O., Colliex, C., and Trauth, D., Science 265, 1212 (1994).Google Scholar
3. de Heer, W. A., Chatelain, A., and Ugarte, D., Science 270, 1179 (1995).Google Scholar
4. Ren, Z. F., Huang, Z. P., Xu, J. W., Wang, J. H., Bush, P., Siegal, M. P., and Provencio, P. N., Science 282, 1105 (1998).Google Scholar
5. Lee, C. J., Kim, D. W., Lee, T. J., Choi, Y. C., Park, Y. S., Kim, W. S., Lee, Y. H., Choi, W. B., Lee, N. S., Kim, J. M., Choi, Y. G., and Yu, S. C., Appl. Phys. Lett. 75, 1721 (1999).Google Scholar
6. Lee, C. J., Park, J., Huh, Y., and Lee, J. Y., Chem. Phys. Lett. 343, 33 (2001).Google Scholar
7. Zhang, Y., Nishitani-Gamo, M., Xiao, C., and Ando, T., Jpn. J. Appl. Phys. 41, L408 (2002).Google Scholar
8. Lee, Y.-H., Jang, Y.-T., Kim, D.-H., Ahn, J.-H., and Ju, B.-K., Adv. Mater. 13, 479 (2001).Google Scholar
9. Nerushev, O. A., Dittmar, S., Morjan, R.-E., Rohmund, F., and Campbell, E. E. B., J. Appl. Phys. 93, 4185 (2003).Google Scholar
10. Hong, Y. K., Kim, H., Lee, G., Kim, W., Park, J. I., Cheon, J., and Koo, J. Y., Appl. Phys. Lett. 80, 844 (2002).Google Scholar
11. Lee, C. J., Kim, D. W., Lee, T. J., Choi, Y. C., Park, Y. S., Lee, Y. H., Choi, W. B., Lee, N. S., Park, G. S., and Kim, J. M., Chem. Phys. Lett. 312, 461 (1999).Google Scholar
12. Sveningsson, M., Morjan, R. E., Nerushev, O. A., Sato, Y., Bäckström, J., Campbell, E. E. B., and Rohmund, F., Appl. Phys. A 73, 409 (2001).Google Scholar