Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-27T14:04:49.251Z Has data issue: false hasContentIssue false

Growth of (Ba,Sr)TiO3 Thin Films in a Multi-wafer MOCVD Reactor

Published online by Cambridge University Press:  21 March 2011

P. Ehrhart
Affiliation:
IFF-Forschungszentrum Jülich, D-52425 Jülich, Germany
F. Fitsilis
Affiliation:
IFF-Forschungszentrum Jülich, D-52425 Jülich, Germany
S. Regnery
Affiliation:
IFF-Forschungszentrum Jülich, D-52425 Jülich, Germany Aixtron AG, D-52072 Aachen, Kackertstr.15-17, Germany
C. L. Jia
Affiliation:
IFF-Forschungszentrum Jülich, D-52425 Jülich, Germany
H.Z. Jin
Affiliation:
IFF-Forschungszentrum Jülich, D-52425 Jülich, Germany
R. Waser
Affiliation:
IFF-Forschungszentrum Jülich, D-52425 Jülich, Germany
F. Schienle
Affiliation:
Aixtron AG, D-52072 Aachen, Kackertstr.15-17, Germany
M. Schumacher
Affiliation:
Aixtron AG, D-52072 Aachen, Kackertstr.15-17, Germany
H. Juergensen
Affiliation:
Aixtron AG, D-52072 Aachen, Kackertstr.15-17, Germany
Get access

Abstract

We report on the performance of a planetary multi-wafer MOCVD reactor which handles 5 six inch wafers simultaneously. The reactor is combined with a liquid delivery system which mixes the liquid precursors from three different sources: 0.35 molar solutions of Ba(thd)2 and Sr(thd)2 and a 0.4 molar solution of Ti(O-i-Pr)2(thd)2. The microstructure and the film stress were investigated by X-ray diffraction and the composition of the films was determined by X-ray fluorescence analysis. As a direct consequence of the reactor design we obtain a high uniformity of the films over 6 inch wafers, as well as high efficiencies for the precursor incorporation. Film growth is discussed within a wide parameter field and the finally achieved electrical properties, e.g., permittivity, loss tangent, leakage current, are discussed in relation to the microstructural properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kingon, A.I., Streiffer, S.K., Basceri, C., Summerfelt, S.R., MRS Bulletin 21, 7, 46 (1996)Google Scholar
2. Wessels, B.W., Annu. Rev. Mater. Sci. 25, 525 (1995) and references therein.Google Scholar
3. Kang, C.S., Cho, H.-J., Hwang, C.S., Lee, B.T., Lee, K.-H., Horii, H, Kim, W. D., Lee, S.I., and Lee, M.Y., Jpn J. Appl. Phys. 36, 6946 (1997).Google Scholar
4. Shen, H., Kotecki, D.E., Murphy, R.J., Zaitz, M., Laibowitz, R.B., Shaw, T.M, Saenger, K.L., Banecki, J., Beitel, G., Klueppel, V., Cerva, H., MRS Symp. Proceed. 493, 33 (1998).Google Scholar
5. Horikawa, T., Tarutani, M., Kawahara, T., Yamamuka, M., Hirano, N., Sato, T., Matsuno, S., Shibano, T., Uchikawa, F., Ono, K., Oomori, T., MRS Symp. Proceed. 541, 3 (1999).Google Scholar
6. VanBuskirk, P.C., Bilodeau, S., Roeder, J. F., Kirlin, P. S., Jpn. J. Appl. Phys. 35, 2520 (1996).Google Scholar
7. Ehrhart, P., Fitsilis, F., Regnery, S., Waser, R., Schienle, F., Schumacher, M., Dauelsberg, M., Strzyzewski, P., and Juergensen, H., accepted for publication in Integrated Ferroelectrics.Google Scholar
8. Fitsilis, F., Regnery, S., Ehrhart, P., Waser, R., Schienle, F., Schumacher, M., Dauelsberg, M., Strzyzewski, P., and Juergensen, H., accepted for publication in J. European Cer. Soc.Google Scholar
9. Yoshida, M., Yabuta, H., Sone, S., Yamaguchi, H., Arita, K., and Kato, Y., Electrochemical Society Proceedings 97–25, 1109 (1977).Google Scholar
10. Stemmer, S., Streiffer, S.K., Browning, N.D., and Kingon, A.I., Appl. Phys. Letters 74, 2432 (1999).Google Scholar
11. Streiffer, S.K., Basceri, C., Parker, C.B., Lash, S.E., and Kingon, A.I., J. Appl. Phys. 86, 4565 (1999).Google Scholar