Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T07:02:03.409Z Has data issue: false hasContentIssue false

Growth of AlGaAs/GaAs Modfet Structures by Gsmbe Using Triethylalkyls and Arsine

Published online by Cambridge University Press:  28 February 2011

Yu-Min Houng
Affiliation:
Hewlett-Packard Labs, Palo Alto, CA 94304
Yi-Ching Pao
Affiliation:
III-V Device Center, Varian Associates, Santa Clara, CA 95054
Paul Mcleodl
Affiliation:
MBE Equipment Operation, Varian Associates, Santa Clara, CA 95054
Get access

Abstract

We have grown high quality AlGaAs/GaAs heterostructures by GSMBE, using triethylalkyls and arsine, for MODFET device applications. Al.28Ga.72As/GaAs modulation-doped structures with moblilities as high as 7,200 and 47,000 cm2/V-s at 300 and 77K, respectively, were obtained for a spacer layer thickness of 30Å and a sheet carrier concentration of l×l012cm−2. These results are comparable to films of a similar structure grown by elemental source MBE or by OMVPE techniques. Quarter-micron gate length MODFETs fabricated from this material have fr greater than 38 GHz and exhibit a 1.7 dB noise figure with 10 dB associated gain at 18 GHz when operated at room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tsang, W. T. and Campbell, J. C., Appl. Phys. Lett. 48, 1416 (1986).Google Scholar
2. Nottenburg, R. N., Bischoff, J. C., Panish, M.B., and Temkin, H., IEEE Electron Dev. Lett. EDL–8, 282 (1987).Google Scholar
3. Tsang, W. T., Appl. Phys. Lett. 50, 63 (1987).CrossRefGoogle Scholar
4. Tsang, W. T., IEEE J. Quant. Electron. QE–23, 936 (1987).Google Scholar
5. Tsang, W. T., Bowers, J. E., Burkhardt, E. G., Ditzenberger, J. A., Wilt, D. P., Dutta, N. K., Napholtaz, S.G., Shen, T. M., Twu, Y. and Logan, R.A., J. Appl. Phys. 63, 1218 (1988).Google Scholar
6. Tsang, W.T., J. Crystal Growth, 95, 121 (1989).CrossRefGoogle Scholar
7. Mars, D.E. and Miller, J.N., J. Vac. Sci. Technol. B4 (2), 571 (1989).Google Scholar
8. Houng, Y.M. and Low, T.S., J. Crystal Growth, 77, 272 (1986).Google Scholar
9. Dapkus, P. D., Manasevit, H.M., Hess, K.L., Low, T.S. and Stillman, G.E., J. Crystal Growth 55, 10 (1981).Google Scholar
10. Ashen, D. J., Dean, P. J., D.T. Hurle, J., Mullin, J. B., and White, A. M., J. Phys. Chem. Solids 36, 1041 (1975).Google Scholar
11. Putz, N., Heinecke, H., Heyen, M. and Balk, P., J. Cryst. Growth, 74, 292 (1986).CrossRefGoogle Scholar
12. Chiu, T.H., Tsang, W.T., Ditzenberger, J. A., Tu, C.W., Ren, F., and Wu, C.S., J. Electron. Mater. 17, 217 (1988).Google Scholar
13. Houng, Y.M. and Fonte-Sowers, A., Electron. Mater. Conf. Santa Barbara, Calif. Pap. J-5, (1984).Google Scholar
14. Mars, D. E., unpublished.Google Scholar
15. Logan, R.A. and Reinhard, F.K., J. Appl. Phys., 44, 4172 (1973).Google Scholar