Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-09T13:46:54.476Z Has data issue: false hasContentIssue false

Growth Mode of CeO2 on Si Surface

Published online by Cambridge University Press:  21 February 2011

Toyohiro Chikyow
Affiliation:
Electrical and Computer Engineering, North Carolina State University, Box 7911 Raleigh, North Carolina 27695-7911 on leave from National Research Institute for Metals, Tsukuba Laboratories, 1-2-1 Sengen Tsukuba-shi Ibaraki 305, Japan
Lee Tye
Affiliation:
Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, North Carolina 27695-7961
Nadia A. El-Masry
Affiliation:
Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, North Carolina 27695-7961
Salah M. Bedair
Affiliation:
Electrical and Computer Engineering, North Carolina State University, Box 7911 Raleigh, North Carolina 27695-7911
Get access

Abstract

The interface structure and electrical properties of CeO2/Si (111) grown by laser ablation in ultra high vacuum was investigated by high resolution transmission electron microscopy .Auger electron spectroscopy and capacitance-voltage measurement. The deposited film was single crystalline CeO2 as indicated by RHEED and x-ray diffraction observations. However, during the deposition, a reaction between CeO2 and Si occurred at the interface. This reaction resulted in the formation of an oxygen deficient amorphous CeOX layer and a S1O2 layer. Post annealing in oxygen atmosphere caused the disappearance of the amorphous CeOX and the regrowth of crystalline CeO2. The SiO2 thickness was also increased by annealing. The modified structure of CeO2/SiO2/Si showed a higher break down valtage, compared with the as-deposited sample. From these results, a combination of CeO2 and SiO2 can have a great potential for SOI structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 for example, Nishimura, T., Akasaka, Y., and Nakata, H., in the Silicon-on-Insulator : Its Technology and Application. edited by Furukawa, S., (KTK Scientific Publisher, Tokyo, 1985 ) p263268.CrossRefGoogle Scholar
2 for example, Strum, J.C., Mat.Res.Soc.Symp.Proc.Vol 107 ,295 (1988).CrossRefGoogle Scholar
3 Kunii, Y., Tabe, M., and Kajiyama, k., J.Appl.Phys., 54, 2847 (1983).CrossRefGoogle Scholar
4 Ogura, A., and Terao, H. J.Appl.Phys.,62, 4170 (1987).CrossRefGoogle Scholar
5 Izumi, K., Doken, M., and Ariyoshi, H., Electron.Letts.,14, 593 (1978).CrossRefGoogle Scholar
6 Lasky, J.B., Appl.Phys.Lett., 48, 78 (1986)CrossRefGoogle Scholar
7 Shimbo, M., Furukawa, K., Fukuda, K., and Tanizawa, K., J.Appl.Phys., 60, 2987 (1986).CrossRefGoogle Scholar
8 Ueno, T., Syowya, T., and Ohdomari, I., J.Appl.Phys., 69, 808 (1991).CrossRefGoogle Scholar
9 for example, Krause, SJ., CO, Jung, Ravi, T.S., Wilson, S.R., and Burke, D.E., Mat.Res.Soc.Symp.Proc. Vol 107, 93 (1988).CrossRefGoogle Scholar
10 Sugihara, K., Kusunoki, S., Inoue, Y., Nishimura, T., and Akasaka, Y., J.Appl.Phys. 62, 4178(1987)CrossRefGoogle Scholar
11 Ishiwara, H. and Asano, T., Appl.Phys.Lett., 40, 66 (1982).CrossRefGoogle Scholar
12 Egami, K., Mikami, M., and Tsuyu, H., Appl.Phys.Lett., 43, 757 (1983).CrossRefGoogle Scholar
13 Hokari, Y., Mikami, M., Egami, K., and Tsuya, H., IEEE J.Solid-State Circuit, SC–20, 173(1985).CrossRefGoogle Scholar
14 Fork, D.K., Ponce, F.A., Tramontana, J.C., and Geballe, T.H., Appl.Phys.Lett., 58, 2294(1991)CrossRefGoogle Scholar
15 Asano, T. and Ishiwara, H., J.Appl.Phys., 55, 3566 (1984).CrossRefGoogle Scholar
16 Sasaki, M., Onda, H., and Hirashita, N., Mat.Res.Soc.Symp.Proc., vol 53, 149 (1986).CrossRefGoogle Scholar
17 Inoue, T., Yamamoto, Y., Koyama, S., and Suzuki, S., Appl.Phys.Lett., 56, 1332 (1990).CrossRefGoogle Scholar
18 Yoshimoto, M., Nagata, H., Tsukahara, T., and Koinuma, H., JpnJ.Appl.Phys., 29, L1199 (1990)CrossRefGoogle Scholar
19 Inoue, T., Osonoe, M., Tohda, H., and Hiramatsu, M., J.Appl.Phys., 69, 8313 (1991).CrossRefGoogle Scholar
20 Tung, R.T., Gibson, J.M., and Poate, J.M., Appl. Phys.Lett., 42, 888 (1983).CrossRefGoogle Scholar
21 Tye, L., Chikyow, T., El-Masry, N. and Bedair, S.M. ( to be submitted to Appl. Phys.Lett.).Google Scholar
22 in the Metallurgical Thermochemistry edited by Kubaschewski, O. and Alcock, C.B. ( Pergamon, New York, 1979) p278.Google Scholar
23 Minowa, K. and Sumino, K., Phys.Rev.Lett., 69, 320 (1992).CrossRefGoogle Scholar