Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-06T04:00:33.924Z Has data issue: false hasContentIssue false

Growth, Microstructures and Optical Properties of KNbO3 Thin Films

Published online by Cambridge University Press:  21 February 2011

Thomas M. Graettinger
Affiliation:
North Carolina State University, 1001 Capability Dr., Raleigh, NC 27695-7919
P. A. Morris
Affiliation:
DuPont Company, Experimental Station, Wilmington, DE 19880-0356
R. R. Woolcotit
Affiliation:
North Carolina State University, 1001 Capability Dr., Raleigh, NC 27695-7919
F. C. Zumsteg
Affiliation:
DuPont Company, Experimental Station, Wilmington, DE 19880-0356
A. F. Chow
Affiliation:
North Carolina State University, 1001 Capability Dr., Raleigh, NC 27695-7919
A. I. Kingon
Affiliation:
North Carolina State University, 1001 Capability Dr., Raleigh, NC 27695-7919
Get access

Abstract

Potassium niobate, KNbO3, possesses high nonlinear optical coefficients making it a promising material for frequency conversion into the visible wavelength range. While epitaxial thin films of KNbO3 have been reported [1,2], only limited data exists concerning the optical loss mechanisms and nonlinear optical properties of these films. In this study, epitaxial thin films of KNbO3 have been grown using ion beam sputter deposition and evaluated in terms of their microstructures and optical properties. Characterization of the microstructures of these films includes the in-plane epitaxial relationship to the substrate. The relationships between the growth parameters and microstructures developed to the indices of refraction and the optical losses (absorption and scattering) are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Graeuinger, T. M., Rou, S. H., Ameen, M. S., Auciello, O., and Kingon, A. I., Appl. Phys. Lett 58, 1964 (1991).CrossRefGoogle Scholar
2 Thony, S. Schwyn and Lehmann, H. W., and Ganter, P., Appl. Phys. LetL. 61,373 (1992).Google Scholar
3 Kozlovsky, W. J., Lenth, W., Lauta, E. E., Moser, A., and Bona, G. L., Appl. Phys. Lett. 56, 2291 (1990).Google Scholar
4 Zimmermann, C., HAnsch, T. W., Byer, R., O'Brien, S., and Welch, D., Appl. Phys. 1eft. 61, 2741 (1992).Google Scholar
5 Poel, C. J. van der, Bierlein, J. D., Brown, J. B., and Colak, S., Appl. Phys. Lett. 57, 2074 (1990).Google Scholar
6 Yamamoto, K., Mizuuchi, K., and Taniuchi, T., Optics Lett. 16, 1156 (1991).Google Scholar
7 Fujimura, M., Suhara, T., and Nishihara, H., Electronics Let. 27, 1207 (1991).CrossRefGoogle Scholar
8 Günter, P., Appl. Phys. Lett. 34, 650 (1979).Google Scholar
9 Amini, M. and Sacks, M. D. in Better Ceramics through Chemistry IV. (Mater. Res. Soc. Proc. 180, Pittsburgh, PA, 1990) p. 675.Google Scholar
10 Gutmann, R. and Hulliger, J., Cryst. Prop. Prep. 32–34.117 (1991).Google Scholar
11 Marcuse, D., Theory of Dielectric Optical Waveguides. (Academic Press, New York, 1974), p.138.Google Scholar
12 Kingon, A. I., Rou, S. H., Ameen, M. S., Graettinger, T. M., Gifford, K., and Auciello, O. in Ele1wQpitksandl Non-linear Optic Materials edited by Bhalla, A. S., Vogel, E. M., and Nair, K. M. (Ceiamic Transactions 14, Westerville, OH, 1990) pp. 179196.Google Scholar