Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T09:08:38.480Z Has data issue: false hasContentIssue false

Growth, Microstructure and Micro-Raman Studies of Rf Magnetron Sputter Deposited SrBi2Ta2O9 and SrBi2TaNbO9 Films

Published online by Cambridge University Press:  15 February 2011

S. Srinivas
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PR 00931-3343.
Menka Jain
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PR 00931-3343.
Ram S. Katiyar
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PR 00931-3343.
Get access

Abstract

A systematic study is undertaken on the effect of growth conditions, on the microstructure and other properties of radio frequency (RF) magnetron sputter deposited SrBi2Ta2O9 (SBT) and SrBi2TaNbO9 (SBTN) films. Polycrystalline SBT and SBTN films were deposited on Si (100), platinized Si, and MgO substrates using stoichiometric targets. Cross sectional scanning electron microscopy reveals the tendency for columnar growth in the films deposited at high substrate temperatures and at high partial pressures of sputtering gas mixtures. AFM studies show that the grain size and the homogeneous surface morphology depends on the post annealing time. XPS studies reveal that oxygen vacancies lie in the Bi2O2 planes. The compositional dependence of the rigid-sublattice mode and the symmetric stretching mode of oxygen octahedrons in the Raman spectra of these materials have been discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Auruvillus, B., Ark Kemi, 463 (1943).Google Scholar
[2] SubbaRao, E.C., J. Chem. Phys. 34, 695 (1965).Google Scholar
[3] Desu, S.B., and Vijay, D.P., Material Sci. Eng., B 32 83 (1995).Google Scholar
[4] Paz DeArajuo, C.A., Cuhilaro, J.D., Mcmillan, L.D., Scott, M.C., and Scott, J. F., Nature, 374 627 (1995).Google Scholar
[5] Chang, Ho Juang, Suh, Kwang Jong, Kim, Min Young and Chang, G. K.., J Korean Phy. Soc., 32 S1679 (1998).Google Scholar
[6] Atsuki, T., Soyama, N., Yonezawa, T. and Orgi, K., Jpn. J. Appl. Phys Part 1 34 5096 (1995).Google Scholar
[7] Battacharyya, S., Bharadwaja, S.N. and Krupanidhi, S.B., Appl. Phys. Lett. 75 2656 (1999).Google Scholar
[8] Desu, S.B., and Vijay, D. P., Zhang, X. Z., and He, B. P., Appl. Phys. Lett., 69 1719 (1996).Google Scholar
[9] Tsai, Huei-Mei., Lin, Pang, and Tseung, Tseung-Yuen, Appl. Phys. Lett., 72 1787 (1998).Google Scholar
[10] Movachan, B.A. and Demchishin, A.V., Phys. Rev. Lett. 56 930 (1986).Google Scholar
[11] Thornton, J., J. Vac. Sci. Tech., 11 666 (1974).Google Scholar
[12] Park, B.H., Noh, T. W., Lee, J., Kim, C. Y. and Jo, W., Appl. Phys. Lett 70 1101 (1997).Google Scholar
[13] Park, B.H, Hyun, S.J., Bu, S.D. and Noh, T.W., Lee, J., Kim, H.D., Kim, T. H. and Jo, W. App. Phys. Lett. 74 1907 (1999).Google Scholar
[14] Moret, M.P., Zallen, R., Newnham, R.E., Joshi, P.C. and Desu, S.B., Phys. Rev.B 57 5715 (1998)Google Scholar
[15] Graves, P., Hua, G., Myhra, S. and Thompson, J. G., J. Solid State Chem 114 112 (1995).Google Scholar