Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T17:58:40.068Z Has data issue: false hasContentIssue false

Growth Mechanisms of YBa2Cu3O7-δ Thin Films Post Annealed at a Low Oxygen Partial Pressure

Published online by Cambridge University Press:  15 February 2011

S. Y. Hou
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
D. J. Werder
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Julia M. Phillips
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
J. H. Marshall
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

The growth mechanism of YBa2Cu3O 7-= thin films grown by the BaF2 post annealing process at low oxygen partial pressure have been studied by transmission electron microscopy. Under the annealing conditions of po2 = 4 Torr and 700°C, BaCuO2 and Y2 Cu2O5 precipitates develop from stoichiometric film precursors of YBCO during annealing. A growth model is proposed based on the observations. In addition, early stage nucleation and growth of both c- and a-axis oriented grains at the substrate interface were observed in quench annealed cross-sectional samples. 90° [100] symmetrical boundaries form between the a- and c-axis oriented grains. The possible effects of these boundaries are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Feenstra, R., Lindemer, T. B., Budai, J. D., and Galloway, M. D. J. Appl. Phys., 69, 6569 (1991).Google Scholar
2. Mogro-Campero, A. and Turner, L. G., Appl. Phys. Lett., 58, 417 (1991).Google Scholar
3. Siegal, M. P., Hou, S. Y., Phillips, J. M., Tiefel, T. H., and Marshall, J. H., J. Mater. Res., 7, 2658 (1992).Google Scholar
4. Hou, S. Y., Phillips, J. M., Werder, D. J., Tiefel, T. H., Fleming, R. M., and Marshall, J. H., accepted by Appl. Phys. Lett. (1993).Google Scholar
5. Clemens, B. M., Nieh, C. W., Kittl, J. A., and Johnson, W. L., Josefowicz, J. Y., and Hunter, A. T., Appl. Phys. Lett., 53, 1871 (1988).Google Scholar
6. Chan, S.-W., Hwang, D. M., and Nazar, L., J. Appl. Phys., 65, 4719 (1989).Google Scholar
7. Li, D. X., Wang, X. K., Li, D. Q., Chang, R. P. H., and Ketterson, J. B., J. Appl. Phys., 66, 5505 (1989).Google Scholar
8. Hsieh, Y.-F., Siegal, M. P., Hull, R., and Phillips, J. M., Appl. Phys. Lett., 57, 2268 (1990).Google Scholar
9. Eom, C. B., Marshall, A. F., Suzuki, Y., Geballe, T. H., Boyer, B., Pease, R. F. W., van Dover, R. B., and Phillips, J. M., Phys. Rev. B, 46, 11902, (1992).CrossRefGoogle Scholar
10. Marshall, A. F. and Eom, C. B., Physica C, 207, 239 (1993).Google Scholar