Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-20T01:23:22.605Z Has data issue: false hasContentIssue false

Growth Kinetics of Quantum Size ZnO Particles

Published online by Cambridge University Press:  09 August 2011

E. M. Wong
Affiliation:
MSE Department, The Johns Hopkins University, Baltimore, MD 21218
J. E. Bonevich
Affiliation:
Metallurgy Division, NIST, Gaithersburg, MD 20889
P. C. Searson
Affiliation:
MSE Department, The Johns Hopkins University, Baltimore, MD 21218
Get access

Abstract

Colloidal chemistry techniques were used to synthesize ZnO particles in the nanometer size regime. The particle aging kinetics were determined by monitoring the optical band edge absorption and using the effective mass model to approximate the particle size as a function of time. We show that the growth kinetics of the ZnO particles follow the Lifshitz, Slyozov, Wagner theory for Ostwald ripening. In this model, the higher curvature and hence chemical potential of smaller particles provides a driving force for dissolution. The larger particles continue to grow by diffusion limited transport of species dissolved in solution. Thin films were fabricated by constant current electrophoretic deposition (EPD) of the ZnO quantum particles from these colloidal suspensions. All the films exhibited a blue shift relative to the characteristic green emission associated with bulk ZnO. The optical characteristics of the particles in the colloidal suspensions were found to translate to the films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Vecht, A., Smith, D.W., Chadha, S.S., Gibbons, C.S., Koh, J., Morton, D., J. Vac. Sci. Technol. B 12 (2), 781 (1994).Google Scholar
2. Yoo, J.S. and Lee, J.D., J. Appl. Phys. 81 (6), 2810 (1997).Google Scholar
3. Goldburt, E.T., Kulkarni, B., Bhargawa, R.N., Taylor, J., Libera, M., Mat. Res. Symp. Proc. 424, 441 (1997).Google Scholar
4. Yamamoto, T., Shiosaki, T., Kawabata, A., J. Appl. Phys. 51 (6), 3113 (1980).Google Scholar
5. Shiosaki, T., Ohnishi, S., Kawabata, A., J. Appl. Phys. 50 (5), 3113 (1979).Google Scholar
6. Matsubara, K., Yamada, I., Nagao, N., Tominaga, K., Tagaki, T., Surf. Sci. 86, 290 (1979).Google Scholar
7. Kadota, M., Kasanami, T., Minakata, M., Jpn. J. Appl. Phys. 31, 3013 (1992).Google Scholar
8. Hayamizu, S., Tabata, H., Tanaka, H., Kawai, T., J. Appl. Phys. 80 (2), 787 (1996).Google Scholar
9. Izaki, M., Omi, T., Appl. Phys. Lett. 68 (17), 2439 (1996).Google Scholar
10. Bahnemann, D.W., Kormann, C., Hoffmann, M.R., J. Phys. Chem. 91, 3789 (1987).Google Scholar
11. The use of brand or trade names does not imply endorsement by NIST.Google Scholar
12. Brus, L.E., J. Chem. Phys. 80 (9), 4403 (1984).Google Scholar
13. Greenwood, G.W., Acta Metall. 4, 243 (1956).Google Scholar
14. Lifshitz, I.M. and Slyozov, V.V., J. Phys. Chem. Solids 19, 35 (1961).Google Scholar
15. Wagner, C. Z., Z. Elecktrochem. 65, 581 (1961).Google Scholar
16. Marr, D.W., Gast, A.P., Langmuir 10 (5), 1348 (1994).Google Scholar
17. Tremillon, B., Inman, D., Reactions in Solution: An Applied Analytical Approach (John Wiley & Sons, Chichester, England, 1997) p. 471.Google Scholar
18. Patil, S.F., Borhade, A.V., Nath, M.J., Chem. Eng. Data 38, 574 (1993).Google Scholar
19. Lovas, R., Macri, G., Petrucci, S., J. Am. Chem. Soc. 92 (22), 6502 (1970).Google Scholar
20. Levich, V.G., Physicochemical Hydrodynamics (Prentice-Hall, Inc., New Jersey, 1962) pp. 4952.Google Scholar