Published online by Cambridge University Press: 10 February 2011
We have studied the thermal growth chemistry and bonding structure of three promising ultrathin (5–20Å), nitrogen rich passivation layers on Si(100), namely-Si3N4, NO/Si(100) grown oxynitride and NO annealed SiO2. These films are intended to serve as substrates with excellent diffusion barrier/interface properties during deposition of high- K dielectrics such as Ta2O5, with tSiO2 equivalent <30Å for ULSI applications. In this paper we show that it is possible to form films with a tailored composition and nitrogen profile using techniques that can easily be integrated with existing silicon processing technology. Alternating growth and surface analysis by X-Ray Photoelectron Spectroscopy (XPS) is used to non destructively characterize the growth.