Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-20T08:45:11.288Z Has data issue: false hasContentIssue false

Growth And Structure Of Nanometric Iron Oxide Films

Published online by Cambridge University Press:  10 February 2011

E. Guiot
Affiliation:
DSM / DRECAM / SRSIM - CEA SACLAY - 91191 - Gif sur Yvette Cedex - France
S. Gota
Affiliation:
DSM / DRECAM / SRSIM - CEA SACLAY - 91191 - Gif sur Yvette Cedex - France
M. Henriot
Affiliation:
DSM / DRECAM / SRSIM - CEA SACLAY - 91191 - Gif sur Yvette Cedex - France
M. Gautier-Soyer
Affiliation:
DSM / DRECAM / SRSIM - CEA SACLAY - 91191 - Gif sur Yvette Cedex - France
S. Lefebvre
Affiliation:
LURE, Batiment 209 D, Centre Universitaire Paris Sud - 91405 - Orsay cedex - France.
Get access

Abstract

Nanometric films of iron oxides (Fe3O4, α and γ Fe2O3) of high crystalline order and purity are epitaxially grown on α-A12O3(0001) by atomic oxygen assisted MBE. A complete characterization of the films structure has been performed by in situ LEED and RHEED, and ex situ GIXRD using synchrotron radiation. The films grown at room temperature and post annealed at 400°C and 700°C (po2=10−6 Torr) are respectively metastable γ-Fe2O3 (111) and α-Fe2O3 (0001). For a substrate temperature of 450°C during growth, Fe3O4 (111) is directly obtained. GIXRD shows an in-plane expansion of the films, which decreases with thickness (0.8 and 0.2% for film thickness of 20 and 80 Å, respectively).

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Weiss, W., Barbieri, A., Van Hove, M. A. and Somorjai, G. A., Phys. Rev. Lett 71 (1993), 1848;Google Scholar
2 Voogt, F. C., Hibma, T., Smulders, P. and Niesen, L., J. Crystal Growth 174 (1997), 440.Google Scholar
3 Fujii, T., Alders, D., Voogt, F. C., Hibma, T., Thole, B. T. and Sawatzky, G. A. , Surf. Sci. 366 (1996), 579.Google Scholar
4 Lind, D. M., Berry, S. D., Chern, G., Mathias, H. and Testardi, L. R., Phys. Rev. B 45 (1992), 1838.Google Scholar
5 .Gao, Y. and Chambers, S. A., J. Cryst. Growth 174 (1997), 446.Google Scholar
6 Farrow, R. F. C., Harp, G. R. , Marks, R. F., Rabedeau, T. A., Toney, M. F., Weller, D. and Parkin, S. S. P., J. Cryst. Growth 133 (1993), 47.Google Scholar
7 Luzeau, P., Xu, X. Z., Laguës, M., Hess, N., Nanot, M., Queyroux, F., Touzeau, M. and Pagnon, D., J. Vac. Sci. Technol. A 8 (6) (1990), 3938.Google Scholar
8 Segmüller, A. , J. Sci. Technol. A9 (1991) 2477..Google Scholar
9 Condon, N. G., Leibsle, F. M., Lennie, A. R., Murray, P. W., Vauhan, D. J. and Thornton, G., Phys. Rev. Lett. 75 (1995), 1961.Google Scholar
10 Gao, Y., Kim, Y.J., Thevuthasan, S., Chambers, S. A. and Lubitz, P., J. Appl. Phys. 81 (1997) 3253.Google Scholar
11 Fujii, T., Takano, M., Kakano, R., Isozumi, Y., Bando, Y., J. of Magnetism and Magnetic Materials 135 (1994) 231.Google Scholar