Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T03:42:40.586Z Has data issue: false hasContentIssue false

Growth and Raman Spectroscopy of Single Crystal ZnGeN2 Rods Grown from a Molten Zn/Ge Alloy

Published online by Cambridge University Press:  01 February 2011

Timothy J. Peshek
Affiliation:
[email protected], Case Western Reserve Univ, Physics, 10900 Euclid Ave., Physics Dept., Cleveland, OH, 44106, United States, (216) 368-0121, (216) 368-4671
Shanling Wang
Affiliation:
[email protected], Case Western Reserve University, Department of Materials Science, 10900 Euclid Ave., Cleveland, OH, 44106, United States
John C. Angus
Affiliation:
[email protected], Case Western Reserve University, Department of Chemical Engineering, 10900 Euclid Ave., Cleveland, OH, 44106, United States
Kathleen Kash
Affiliation:
[email protected], Case Western Reserve University, Department of Physics, 10900 Euclid Ave., Cleveland, OH, 44106, United States
Get access

Abstract

We present evidence for the growth of ZnGeN2 from a molten Zn/Ge alloy via the vapor-liquid-solid mechanism. Hexagonally faceted, 3-4 microns wide by 20-40 microns long, single crystal rods of ZnGeN2 capped by a polycrystalline dome of ZnGeN2 were formed. A micro-Raman spectrum shows several individually resolved peaks and no spectral features above 825 cm−1, in contrast to a previously published spectrum for polycrystalline ZnGeN2, but in excellent agreement with recent theoretical predictions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Maunaye, M., Lang, J., Res, Mat.. Bull. 5, 793 (1970)Google Scholar
2. Larson, W.L., Maruska, H.P., Stevenson, D.A., J. Electrochem Soc.: Sol. State Sci. and Tech. 121, 1683 (1974)Google Scholar
3. Endo, T., Sato, Y., Takizawa, H., Shimada, M., J. Mat. Sci. Lett. 11, 424 (1992)Google Scholar
4. Kikkawa, S., Morisaka, H., Sol. State. Comm. 112, 513 (1999)Google Scholar
5. Zhu, L.D., Maruska, P.H., Norris, P.E., Yip, P.W., Bouthillette, L.O., MRS Internet J. Nitride Semicond. Res. 4S1, G3.8 (1999)Google Scholar
6. Misaki, T., Wakahara, A., Okada, H., Yoshida, A., J. Crystal Growth 260, 125 (2004)10.1016/j.jcrysgro.2003.08.011Google Scholar
7. Osinsky, A., Fuflyigin, V., Zhu, L.D., Goulakov, A.B., Graff, J.W., Schubert, E.F., Proc. IEEE/Cornell Conf. High Performance Devices, 2000, p. 168 Google Scholar
8. Viennois, R., Taliercio, T., V.Potin, Errebbahi, A., Gil, B., Charar, S., Haidoux, A., Tedenac, J.-C., Mat. Sci. and Eng. B82, 45 (2001)10.1016/S0921-5107(00)00699-1Google Scholar
9. Du, K., Bekele, C., Hayman, C.C., Angus, J.C., Pirouz, P., and Kash, K., J. Crystal Growth 310, 1065 (2008)Google Scholar
10. Lambrecht, W.R.L, private communication (2007)Google Scholar
11. Wintenbarger, M., Maunaye, M., Laurent, Y., Mat. Res. Bull. 8, 1049 (1973)Google Scholar
12. Lambrecht, W. R.L., Alldredge, E. and Kim, K., Phys. Rev. B 72, 155202 (2005)Google Scholar
13. Limpijumnong, S., Rashkeev, S.N., Lambrecht, W.R.L, MRS Internet J. Nitride Semicond. Res. 4S1, G611 (1999)Google Scholar
14. Su, C-H, Tung, T., Mubarak, A., Brebrick, R.F., High Temp. Science 18, 197 (1984)Google Scholar
15. Wagner, R.S., Ellis, W.C., Applied Phys. Lett. 4 (5), 89 (1964)Google Scholar
16. Lambrecht, W.R.L, Paudel, T., private communication (2007)Google Scholar