Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T09:10:05.907Z Has data issue: false hasContentIssue false

Growth and Characterization of Znsete Epilayers and Superlattices

Published online by Cambridge University Press:  28 February 2011

M. C. Phillips
Affiliation:
T. J. Watson, Sr., Laboratory of Applied Physics, Caltech, Pasadena, CA 91125
Y. Rajakarunanayake
Affiliation:
T. J. Watson, Sr., Laboratory of Applied Physics, Caltech, Pasadena, CA 91125
J. O. Mccaldin
Affiliation:
T. J. Watson, Sr., Laboratory of Applied Physics, Caltech, Pasadena, CA 91125
R. H. Miles
Affiliation:
Hughes Research Laboratories, Malibu, CA 90265
D. H. Chow
Affiliation:
T. J. Watson, Sr., Laboratory of Applied Physics, Caltech, Pasadena, CA 91125
D. A. Collins
Affiliation:
T. J. Watson, Sr., Laboratory of Applied Physics, Caltech, Pasadena, CA 91125
T. C. Mcgill
Affiliation:
T. J. Watson, Sr., Laboratory of Applied Physics, Caltech, Pasadena, CA 91125
Get access

Abstract

Little has been published about Te-rich ZnSexTel−x grown at low temperatures, in spite of some successes in the fabrication of wide band gap light emitting devices from ZnSeTe alloys grown at higher temperatures. We present x-ray diffraction and photoluminescence (PL) spectra for ZnSeTe epilayers and ZnSeTe/ZnTe superlattices grown by molecular beam epitaxy (MBE). These we compare with measurements on ZnTe, ZnSe and CdZnTe epilayers and on CdZnTe/ZnTe superlattices grown under similar conditions and also with data published for ZnSeTe alloys grown at high temperatures. Equilibrium phase diagrams for the ZnSeTe alloy system suggest a large miscibility gap at MBE growth temperatures; this may account for some unusual features in the (PL) spectra and for large line widths in the x-ray data. In spite of these possible miscibility problems, we find that ZnSeTe alloys luminesce brightly.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Aven, M. and Devine, J.Z., J. Luminescence 7, 195 (1973).Google Scholar
[2] Aven, M., Devine, J.Z., Bolon, R.B., Ludwig, G.W., J. Appl. Phys. 43, 4136 (1972)Google Scholar
[3] Aven, M., Appl. Phys. Lett. 7, 146 (1965).Google Scholar
[4] Yao, T. and Maekawa, S., J. Cryst. Growth 53, 423 (1981).Google Scholar
[5] McCaldin, J.O., J. Vac. Sci. Technol., to be published.(1990).Google Scholar
[6] Yao, T., Makita, Y. and Maekawa, S., J. Cryst. Growth 45, 309 (1978).Google Scholar
[7] Lee, D., Mysyrowicz, A., Nurmikko, A.V. and Fitzpatrick, B.J., Phys. Rev. Lett. 58, 1475 (1987).Google Scholar
[8] Kobayashi, M., Mino, N., Konagai, M., and Takahashi, K., Surf. Sci. 174, 550 (1986).Google Scholar
[9] Kisker, D.W., J. Cryst. Growth 98, 127 (1989).Google Scholar
[10] Phillips, M.C., Rajakarunanayake, Y., McCaldin, J.O., Chow, D.H., Collins, D.A., McGill, T.C., Proc. SPIE - Int. Soc. Opt. Eng., to be published (1990)Google Scholar
[11] Yao, T., Kato, M., Davies, J.J., and Tanino, H., J. Cryst. Growth 86, 552 (1988).Google Scholar
[12] Naumov, A. Yu., Permogorov, S.A., Reznitskii, A.N., Zhulai, V.Ya., Novozhilov, V.A. and Petrovskii, G.T., Soy. Phys. Solid State 29, 215 (1987).Google Scholar
[13] Leute, V., Solid State Ionics 17, 185 (1985).Google Scholar
[14] Feldman, R.D., Austin, R.F., Fuoss, P.H., Dayem, A.H. and Westerwick, E.H., J. Vac. Sci. Technol. B 5, 690 (1987).Google Scholar
[15] Aleksandrova, L. A., Sanitarov, V. A., and Kalinkin, I. P., Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy 19, 1447 (1983).Google Scholar