Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-20T06:44:23.688Z Has data issue: false hasContentIssue false

Growth and Characterization of Epitaxially Stabilized Pseudomorphic α-Sn/Si Heterostructures

Published online by Cambridge University Press:  10 February 2011

Kyu Sung Min
Affiliation:
Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125.
Harry A. Atwater
Affiliation:
Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125.
Get access

Abstract

Growth and structural characterization of ultrathin, coherently strained oc-Sn/Si quantum well heterostructures have been performed. Severe Sn segregation to the surface during growth, which prevents growth of these structures at ordinary Si epitaxy temperatures, has been minimized by substrate temperature and growth rate modulations during molecular beam epitaxy. Single Sn/Si quantum wells grown with Sn coverage up to 1.4 ML have been verified to be pseudomorphic by transmission electron microscopy and X-ray rocking curve analysis. Similarly, pseudomorphic superlattices with up to 10 periods of 1 ML Sn/7.7 nm Si have been verified to be free of extended defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Groves, S. and Paul, W., Phys. Rev. Lett. 11, 194 (1963).Google Scholar
2. Soref, R. A. and Perry, C. H., J. Appl. Phys. 69, 539 (1991).Google Scholar
3. Atwater, H. A., He, G., and Saipetch, K., Mat. Res. Soc. Symp. Proc. 355, 123 (1995).Google Scholar
4. He, G. and Atwater, H. A., Phys. Rev. Lett. 79, 1937 (1997).Google Scholar
5. Shiryaev, S. Yu., Hansen, J. Lundsgaard, Kringhoj, P., and Larsen, A. Nylandsted, Appl. Phys. Lett. 67, 2287 (1995);Google Scholar
6. Khan, Al-Sameen T., Berger, Paul R., Guarin, Fernando J., Iyer, Subramanian S., Appl. Phys. Lett. 68, 3105 (1996).Google Scholar
7. Olajos, J., Vogl, P., Wegscheider, W., and Abstreiter, G., Phys. Rev. Lett. 67, 1991.Google Scholar
8. Goodman, C.H.L., IEEE Proc. 129, 189 (1982).Google Scholar
9. Trumbore, F. A., Isenberg, C. R., and Porbansky, E. M., J. Phys. Chem. Solids 9, 60 (1959).Google Scholar
10. Zeindl, H. P., Wegehaupt, T., Eisele, I., Oppolzer, H., Reisinger, H., Tempel, G., and Koch, F., Appl. Phys. Lett. 50, 1164 (1987).Google Scholar
11. Wegscheider, W., Olajos, J., Menczigar, U., Dondl, W., and Abstreiter, G., J. Cryst. Growth 123, 75 (1992).Google Scholar
12. Eaglesham, D.J., Gossmann, H.-J., and Cerullo, M., Phys. Rev. Lett. 65, 1227 (1990).Google Scholar
13. Min, K. S. and Atwater, Harry A., to be published in Appl. Phys. Lett. 72, 1998.Google Scholar
14. Hull, R., Bean, J.C., Cerdeira, F., Flory, A.T., and Gibson, J.M., Appl. Phys. Lett. 48, 56 (1986).Google Scholar
15. Ueda, K., Kinoshita, K., and Mannami, M., Surf. Sci. 145, 261 (1984); D.H. Rich, T, Miller, A. Samsavar, H.F.Lin, and T.-C. Chiang, Phys. Rev. B 37, 10221 (1988); A. A. Baski and C. F. Quate, Phys. Rev. B 44, 11167 (1991).Google Scholar