Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T16:41:35.462Z Has data issue: false hasContentIssue false

Growth and Characterization of a Combinatorial Array of Mixed-Phase Magnesium-Aluminum Thin-Film Alloys

Published online by Cambridge University Press:  01 February 2011

Charles Olk
Affiliation:
[email protected], General Motors R&D, Materials & Processes Lab, MC 480-106-224, 30500 Mound Rd, Warren, MI, 48090-9055, United States
Daad B. Haddad
Affiliation:
[email protected], General Motors R&D, Materials and Processes Lab, MC 480-106-224, 30500 Mound Rd., Warren, MI, 48090-9055, United States
Get access

Abstract

Combinatorial gradient-controlled sputter deposition has been employed to produce a library of 100 separate thin films with a wide range of Mg-Al alloy compositions. We have successfully isolated the â (Mg17Al12) phase in polycrystalline films for investigation. The presence of the â phase has been found to be desirable for increasing corrosion resistance; however, in structural components under tensile loading and/or at elevated temperatures, the â phase precipitates undergo coarsening which induces poor creep behavior in several common alloys. We have also synthesized amorphous Mg-Al and mixed-phase compositions as identified by X-ray diffraction measurements. Details of the growth procedure as well as structural and compositional characterization are presented.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Neite, G., Kubota, K., Higashi, K., Hehmann, F., Magnesium-based alloys. In: Cahn, R.W., Haasen, P., Kramer, E.J. (Eds.). Mater. Sci. and Tech: A Comprehensive Treatment, 8, VCH,Weinheim, 113 (1996).Google Scholar
2 Aroule, P., Magnesium supply and demand, in: Kaplan, H. (Ed.), IMA Annual World Magnesium Conference, IMA, California, CA, USA, 36 (1998).Google Scholar
3 Lesuer, D.R., Kipoures, G.T., JOM 7, 17 (1995).Google Scholar
4 Luo, A., Pekgüleryüz, M.O., J. Mater. Sci. 29, 52 (1994).Google Scholar
5 Gaines, L., Cuenca, R., Stodolsky, F., and Wu, S., Conference on Automotive Technology Development, October 28, (1996).Google Scholar
6 Ohkubo, H., Shimomura, Y., Mukouda, I., Sugio, K., Kiritani, M., Mat. Sci. and Eng. A350, 30 (2003).Google Scholar
7 Tallarida, M., Electronic properties of semiconductor surfaces and metal/semiconductor interfaces, Thesis Fachbereich Physik, Freie Universität Berlin (2005).Google Scholar
8 Soer, W. A., J. Th. M. De Hosson, Minor, A. M., Stach, E. A., Morris, J. W. Jr, Mat. Res. Soc. Symp. Proc. 795, U9.3.1 (2004).Google Scholar
9 Pranevicius, L., Milcius, D., Pranevicius, L. L., Thomasc, G., J. Alloys Comp. 373, 9 (2004).Google Scholar
10 Nayeb-Hashemi, A. A., Clark, J.B.,. Phase Diagrams of Binary Magnesium Alloys (1988), ASM International, Metals Park, Ohio.Google Scholar
11 Lunder, O., Nordlien, J.H., Nisangliou, K., Corrosion Reviews 15 (3–4), 439(1997).Google Scholar
12 Song, G., Atrens, A., Dargusch, M., Corrosion Science 41, 273 (1999).Google Scholar
13 Mathieu, S., Rapin, C., Steinmetz, J., Steinmetz, P., Corrosion Science 45 (12), 2755 (2003).Google Scholar
14 Villars, P., Calvert, L. D.,. Pearson's Handbook of Crystallographic Data for Intermetallic Phases (1985), ASM, Metals Park, Ohio.Google Scholar
15 Clark, J. B., Acta Metall. 16, 141 (1968).Google Scholar
16 Crawley, A. F., Miliken, K.S., Acta Metall. 22, 557 (1974).Google Scholar
17 Niea, J. F., Xiao, X. L., Luob, C. P., Muddle, B. C., Micron 32, 857 (2001).Google Scholar
18 Kubota, K.; Mabuchi, M.; and Higashi, K., J. Mat. Sci., 34, 2255 (1999).Google Scholar
19 Spigarelli, S.; Regev, M.; Evangelista, E.; and Rosen, A., Mat. Sci. Tech., 17, 627(2001).Google Scholar
20 Agnew, S. R. et al. ," Magnesium Technology 2000, eds. Kaplan, H. I., J. Hryn, and B. Clow (Warrendale, PA: The Minerals, Metals & Materials Society, (2000) 285290.Google Scholar
21 Yokoyama, T., Strain 3, 167 (2003).Google Scholar
22 Lunder, O., Lein, J. E., Aune, T.K., Nisancioglu, K., Corrosion 45 (9), 741 (1989).Google Scholar
23 Lunder, O., Nordlien, J. H., Nisangliou, K., Corrosion Reviews 15 (3–4), 439 (1997).Google Scholar
24 Bengtsson, D. lucher, B., Svensson, J. E., Johansson, L. G., Rohwerder, M., Stratmann, M., J. Electrochem. Soc. 151 B621 (2004).Google Scholar
25 Andreatta, F., Apachitei, I., Kodentsov, A. A., Dzwonczyk, J., J. Duszczyk, Electrochimica Acta 51 3551 (2006).Google Scholar
26 Olk, C. H., Tibbetts, G. G., Simon, D., and Moleski, J. J., J. Appl. Phys. 94, 720 (2003).Google Scholar
27 Olk, C. H. and Haddad, D. B., J. Mater. Res. 21, 1221 (2006).Google Scholar
28 Su, H. L., Harmelin, M., Donnadieu, P., Baetzner, C., Seifert, H. J., Lukas, H. L., Effenberg, G. and Aldinger, F., J. Alloys Comps. 247, 57(1997).Google Scholar
29 Kobayashl, K. F., Awazu, T. and Shingu, P. H., J. Mater. Sci. Lett. 6, 781 (1987).Google Scholar
30 Shin, S. M., Ray, M. A., Rigsbee, J. M., Greene, J. E., Appl. Phys. Lett. 43 (3) 249 (1983).Google Scholar
31 Chu, J. P., Chang, J. W., Lee, P. Y., Wu, J. K., Wang, J. Y., Thin Solid Films 312, 78 (1998).Google Scholar
32 Wilson, T. W., Cho, H., Porter, W. D., Speakman, S. A., Fan, C., Liaw, P. K., J. NonCrys. Solids 352, 4024 (2006).Google Scholar
33 Greer, A. L., Science 267, 1947 (1995).Google Scholar
34 Pryds, N. H., Mat. Sci. and Eng. A 375–377, 186 (2004).Google Scholar
35 Johnson, W., JOM 54, 40 (2002).Google Scholar
36 Arnell, R. D., Bates, R. I., Vacuum 43, 105 (1992).Google Scholar
37 Graper, E. B., J. Vac. Sci. Technol. A 9,(3), 591 91991).Google Scholar