Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T07:38:24.165Z Has data issue: false hasContentIssue false

(Green) Photocatalytic Synthesis Employing Nitroaromatic Compounds

Published online by Cambridge University Press:  17 May 2011

Ralf Dillert
Affiliation:
Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität, Callinstrasse 3, 30167 Hannover, Germany
Amer Hakki
Affiliation:
Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität, Callinstrasse 3, 30167 Hannover, Germany
Detlef W. Bahnemann
Affiliation:
Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität, Callinstrasse 3, 30167 Hannover, Germany
Get access

Abstract

The combination of a solid photocatalyst (TiO2) and a co-catalyst (p-toluenesulfonic acid) has been successfully applied for the light-induced conversion of nitroarenes in O2-free ethanolic suspensions yielding substituted quinolines and tetrahydroquinolines, while in the presence of TiO2 loaded with a noble metal (Pt, Pd) N-alkylarylamines and N,N-dialkylarylamines were formed. Depending on the compounds that have been detected by GC–MS the reaction mecha-nism is discussed comprising the formation of anilines and ethanal by a photocatalytic reaction step and their subsequent thermal reactions to quinolines, tetrahydroquinolines, and N-alkylated anilines via a Schiff base as an intermediate product.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ohtani, B., Pal, B., and Ikeda, S., Catal. Surv. Asia 7, 165176 (2003).Google Scholar
2. Palmisano, G., Augugliaro, V., Pagliaro, M., and Palmisano, L., Chem. Commun. 2007, 34253437.Google Scholar
3. Shiraishi, Y., and Hirai, T., J. Photochem. Photobiol. C: Photochem. Rev. 9, 157170 (2008).Google Scholar
4. Palmisano, G., García-López, E., Marcì, G., Loddo, V., Yurdakal, S., Augugliaro, V., and Palmisano, L., Chem. Commun. 46, 70747089 (2010).Google Scholar
5. Galian, R., and Pérez-Prieto, J., Energy Environ. Sci. 3, 14881498 (2010).Google Scholar
6. Mahdavi, , Bruton, T. C., and Li, Y., J. Org. Chem. 58, 744746 (1993).Google Scholar
7. Ferry, J. L., and Glaze, W. H., Langmuir 14, 35513555 (1998).Google Scholar
8. Flores, S. O., Rios-Bernij, O., Valenzuela, M. A., Córdova, I., Gómez, R., and Gutiérrez, R., Top. Catal. 44, 507511 (2007).Google Scholar
9. Rios-Bernÿ, O., Flores, S. O., Córdova, I., and Valenzuela, M. A., Tetrahedron Lett. 51, 27302733 (2010).Google Scholar
10. Hakki, A., Dillert, R., and Bahnemann, D. W., presented at The European Materials Research Society Fall Meeting, 15–19 September, 2008, Warsaw, Poland, Book of Abstract, p. 103, and at the 24th International Conference on Photochemistry (ICP 2009), 19–24 July, 2009, Toledo, Spain (unpublished).Google Scholar
11. Park, K. H., Joo, H. S., Ahn, K. I., and Jun, K., Tetrahedron Lett. 36, 59435946 (1995).Google Scholar
12. Hakki, A., Dillert, R., and Bahnemann, D. W., Catal. Today 144, 154159 (2009).Google Scholar
13. Selvam, K., and Swaminathan, M., Catal. Commun. 12, 389393 (2011).Google Scholar
14. Kraeutler, B., and Bard, A. J., J. Am. Chem. Soc. 100, 43174318 (1978); J. Papp, H.-S. Shen, R. Kershaw, K. Dwight, and A. Wold, Chem. Mater. 5, 284–288(1993); G. Bamwenda, S. Tsubota, T. Nakamura, and M. Haruta, J. Photochem. Photobiol. A: Chem. 89, 177–189 (1995).Google Scholar
15. Bahnemann, D., Henglein, A., and Spanhel, L., Faraday Discuss. 78, 151163 (1984); H. J. Zhang, G. H. Chen, and D. W. Bahnemann, J. Mater. Chem. 19, 5089–5121(2009).Google Scholar
16. Boehm, H. P., Discuss. Faraday Soc. 52, 264275 (1971).Google Scholar