Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T09:42:38.206Z Has data issue: false hasContentIssue false

Grazing-angle Incidence X-ray Diffraction by the Si1-α(x)-β(x) Geβ(x) Cβ(x) /Si Heterojunction where the Germanium and the Carbon Concentrations are Periodically Varying along the Flat Layer Surface

Published online by Cambridge University Press:  01 February 2011

Hayk H. Bezirganyan Jr
Affiliation:
Dept. of Informatics and Applied Mathematics, Yerevan State University, #1, Alex Manoogian Street, Yerevan 375025, Republic of Armenia.
Siranush E. Bezirganyan
Affiliation:
Dept. of Physics, Yerevan State University Armenia, #1, Alex Manoogian Street, Yerevan 375025, Republic of Armenia.
Hakob P. Bezirganyan
Affiliation:
Dept. of Physics, Yerevan State University Armenia, #1, Alex Manoogian Street, Yerevan 375025, Republic of Armenia.
Petros H. Bezirganyan Jr
Affiliation:
Dept. of Computer Science, State Engineering University of Armenia, #105, Terian Street, Yerevan 375009, Republic of Armenia.
Get access

Abstract

Presented theoretical paper concerns the investigation of SiGeC/Si heterojunction by the Grazing-angle Incidence X-ray Diffraction (GIXD) method. We consider a possibility in principal of the GIXD by the specific long-range harmonic variations of the germanium and carbon compositions in the thin SiGeC layer. Evaluation of the theoretically calculated coherent part of x-radiation scattered by the SiGeC layer points the way to the experimental direct investigations of the long-period structured intermediate transformation states of SiGeC layer that emerge owing to inhomogeneity of the strain field along the heterojunction surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dietrich, B., Osten, H. J., Rucker, H., Methfessel, M. and Zaumseil, P., Phys. Rev. B, 49(24), 17185 (1994).Google Scholar
2. Fischer, G. G., Zaumseil, P., Bugiel, E., and Osten, H. J., J. Appl. Phys., 77(5), 1934 (1994).Google Scholar
3. Osten, H. J., Endisch, D., Bugiel, E., Dietrich, B., Fischer, G. G., Kim, M., Kruger, D. and Zaumseil, P., Semicond. Sci. Technol., 11, 1678 (1996).Google Scholar
4. Schmidt, O. G., Lange, C., Eberl, K., Kienzle, O., and Ernst, F., Appl. Phys.Lett., 71, 2340 (1997).Google Scholar
5. Jonczyk, R., Hits, D. A., Kulik, L. V., Kolodzey, J., Kaba, M., and Barteau, M. A., J. Vac. Sci. Technol. B, 16, 1142 (1998).Google Scholar
6. Shao, X., Jonczyk, R., Dashiell, M., Hits, D., Orner, B. A., Khan, A.-S., Roe, K., Kolodzey, J., Berger, P. R., Kaba, M., Barteau, M. A., and Unruh, K. M., J. Appl. Phys., 85 (1), 578 (1999).Google Scholar
7. Bezirganyan, P. A. Jr (), Bezirganyan, A. P., Bezirganyan, S. E. and Hovnanyan, K. O., in Book of Abstracts (16th International Conference on X-ray Optics and Microanalysis ICXOM XVI, Vienna, Austria, 2001), p.57.Google Scholar
8. Bezirganyan, A. P. and Bezirganyan, P. A., Phys. Stat. Sol. (a), 105, 345 (1988).Google Scholar
9. Meixner, J., Schaefke, F. W. and Wolf, G., Mathieu Functions and Spheroidal Functions and their Mathematical Foundations, (Springer-Verlag, Berlin, 1980) pp. 1543.Google Scholar