Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T01:51:21.007Z Has data issue: false hasContentIssue false

Grazing Incidence X-Ray Diffraction Study of A Glass-Liquid Crystal Buried Interface

Published online by Cambridge University Press:  15 February 2011

L. J. Martínez Miranda*
Affiliation:
Department of Materials and Nuclear Engineering, University Of Maryland, College Park, MD. 20742-2115; Department of Physics and Liquid Crystal Institute, Kent State University, Kent, OH 44242–0001
Get access

Abstract

We have used Grazing Incidence X-ray Diffraction to study the structure of a liquid crystal (LC) at the buried LC-glass interface in micrometer size LC films. This measurement is done in reflection mode through the glass substrate, which consists of a grating photolithographed onto a 0.2mm slide. This experiment was performed in beamline X22B of the National Synchrotron Light Source at Brookhaven National Laboratory, using 1.3776Å X-ray radiation. We have used both the glass and LC absorption properties to control the penetration depth of the beam into the LC film bulk. The ability to measure LC interfaces in this manner is essential to study any LC device, arid its response to applied fields.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. deGennes, P.G., The Physics of Liquid Crystals, Clarendon, Oxford (1974).Google Scholar
2. See, for example, Clark, N. A. and Lagerwall, S. T., ”Introduction to Ferroelectric Liquid Crystals”, in Ferroelectric Liquid Crystals: Principles, Properties and Applications, Gordon and Breach Science Publishers, Philadelphia, 1991, pp. 197.Google Scholar
3. Cognard, J., Molec. Cryst. Liq. Cryst., Supplement 1, (1982).Google Scholar
4. Smela, E. and Martínez-Miranda, L.J., J. Appl. Phys., 73, 32993304 (1993).Google Scholar
5. Smela, E. and Martínez-Miranda, L. J., Liq. Cryst., 14, 18771883, 1993.Google Scholar
6. Smela, E. and Martínez-Miranda, L. J., J. Appl. Phys.,72, 1923 (1995).Google Scholar
7. Smela, E. and Martínez-Miranda, L. J., J. Appl. Phys., 77, 1930 (1995).Google Scholar
8. Martínez-Miranda, L. J., Smela, E. and Liu, H., SPIE Vol.2175, 1994.Google Scholar
9. Mang, J. T., Sakamoto, K. and Kumar, S., Mol. Cryst. Liq. Cryst., 223, 133 (1992).Google Scholar
10. Crawford, G. P., Allender, D. W. and Doane, J. W., Phys. Rev. A, 45, 8693 (1992).Google Scholar
11. Crawford, G. P., Ondris-Crawford, R., Zumer, S. and Doane, J. W., Phys. Rev. Lett. 70, 1838 (1993).Google Scholar
12. Iannacchione, G. S., Mang, J. T., Kumar, S. and Finotello, D., Phys. Rev. Lett., 73, 2708 (1994).Google Scholar
13. Iannacchione, G. S., Strigazzi, A. and Finotello, D., Liq. Cryst., 14, 1153 (1993).Google Scholar
14. Krajl, S., Zumer, S. and Allender, D. W., Phys. Rev. A, 41, 2943 (1991).Google Scholar
15. Drzaic, P., private communication (1995).Google Scholar
16. Ocko, B. M., Phys. Rev. Lett., 64, 2160 (1990).Google Scholar
17. See, for example, Collett, J., Pershan, P. S., Sirota, E. B. and Sorenson, L. B., Phys. Rev. Lett., 52, 356 (1984).Google Scholar
18. See, for example, Ocko, B. M., Braslau, A., Pershan, P. S., Als-Nielsen, J. and Deutsch, M., Phys. Rev. Lett, 57, 94 (1986); B. D. Swanson, H. Stragier, D. J. Tweet and L. B. Sorensen, Phys. Rev. Lett., 62, 909 (1989).Google Scholar
19. See, for example, Guyot-Sionnest, P., Hsiung, H. and Shen, Y. R., Phys. Rev. Lett, 57, 2963 (1986); H. Hsiung and Y. R. Shen, Phys. Rev. A, 34, 4303 (1987); X. Zhuang, L. Marrucci and Y. R. Shen, Phys. Rev. Lett., 73, 1513 (1994).Google Scholar
20. Laurentovich, O. D. and Pergamenshchik, V. M., Phys. Rev. Lett., 73, 979 (1994).Google Scholar
21. Kothekar, N., Allender, D. W., and Hornreich, R. M., Phys. Rev. E, 49, 2150 (1994).Google Scholar
22. Zhuang, X., Marrucci, L. and Shen, Y. R., Phys. Rev. Lett., 73, 1513 (1994).Google Scholar
23. Clark, N. A., Phys. Rev. Lett., 55, 292 (1985);Google Scholar
24. See, for example, Handschy, M. A. and Clark, N. A., Ferroelectrics, 59, 69 (1984).Google Scholar
25. Chandani, A. D. L., Hagiwara, Takashi, Suzuki, Yoshi-ichi, Ouchi, Yuchio, Takezoe, Hideo and Fukuda, Atsuo, Japanese Journal of Applied Physics, 27, L729 (1988).Google Scholar
26. Shi, Y., Cull, B. and Kumar, S., Phys. Rev. Lett., 71, 2773 (1993).Google Scholar
27. Chen, W., Feller, M. B., and Shen, Y. R., Phys. Rev. Lett. 63, 2665 (1989).Google Scholar
28. Moses, T., Ouchi, Y., Chen, W. and Shen, Y. R., Mol. Cryst. Liq. Cryst. 225, 55 (1993).Google Scholar
29. Martínez-Miranda, L. J., Smela, E. and Liu, H., Mat. Res. Soc. Spring Meeting, 345, 205, 1994.Google Scholar
30. Marra, W. C., Eisenberger, P. and Cho, A. Y., J. Appl. Phys., 50, 6927 (1979).Google Scholar
31. Toney, M. F., and Huang, T. C., J. Mater. Res. 3, 351 (1988).Google Scholar
32. Vineyard, George H., Phys. Rev. B, 26, 4146 (1982).Google Scholar
33. Martínez-Miranda, L. J., in progress.Google Scholar
34. Schadt, M., Scmidt, K., Kozinkov, V. and Chigrinov, V., Jpn J. Appl. Phys. 31, 2155 (1992); M. Schadt, H. Seiberle, A. Schuster and S. M. Kelly, Jpn. J. Appl. Phys. 34, 3240 (1995); M. Schadt, H. Seiberle, A. Schuster and S. M. Kelly, Jpn. J. Appl. Phys. 34, L764 (1995).Google Scholar