Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T19:52:08.379Z Has data issue: false hasContentIssue false

Grain Growth Behavior During Microwave Annealing of Silicon Nitride

Published online by Cambridge University Press:  10 February 2011

M. Hirota
Affiliation:
Proposal-based Advanced Industrial Technology R & D Program Office, Industrial Technology Department, New Energy and Industrial Technology Development Organization (NEDO), 28th Floor, Sunshine 60 Bldg., 1-1 Higashi-Ikebukuro 3-chome, Toshima-ku, Tokyo 170, JAPAN
M. E. Brito
Affiliation:
National Industrial Research Institute of Nagoya, I-1 Hirate-cho, Kita-ku Nagoya, Aichi 462, JAPAN
K. Hirao
Affiliation:
National Industrial Research Institute of Nagoya, I-1 Hirate-cho, Kita-ku Nagoya, Aichi 462, JAPAN
K. Watari
Affiliation:
National Industrial Research Institute of Nagoya, I-1 Hirate-cho, Kita-ku Nagoya, Aichi 462, JAPAN
M. Toriyama
Affiliation:
National Industrial Research Institute of Nagoya, I-1 Hirate-cho, Kita-ku Nagoya, Aichi 462, JAPAN
T. Nagaoka
Affiliation:
National Industrial Research Institute of Nagoya, I-1 Hirate-cho, Kita-ku Nagoya, Aichi 462, JAPAN
Get access

Abstract

A comparative study of grain growth behavior in silicon nitride under conventional and microwave annealing is presented. Microwave annealed specimens showed a faster growth rate as indicated by the quantitative microstructural analysis. The phenomenon was used in combination with seeding techniques to develop a silicon nitride exhibiting a bi-modal microstructure. Microwave annealing was carried out using a microwave radiation frequency of 28 GHz.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Hirao, K., Nagaoka, T., Brito, M. E. and Kanzaki, S., J. Am. Ceram. Soc., 77[7], 18571862(1994).Google Scholar
[2] Cheng, J., Fang, Y., Agrawal, D. K., Wan, Z., Chen, L., Zhang, Y., Zhou, J., Dong, X. and Qui, J., in Microwave Processing of Materials IV, edited by Iskander, M. F., Lauf, R. J. and Sutton, W. H.(Mater. Res. Soc. Proc. 347, Pittsburgh, PA, 1994)pp. 557562.Google Scholar
[3] Tiegs, T. N., Kiggans, J. O. Jr., Lin, H. T. and Willkens, C. A., 347, pp.501506.Google Scholar
[4] Tiegs, T. N., Kiggans, J. O. Jr. and Kimrey, H. D. Jr. in Microwave Processing of Materials II(Mater. Res. Soc. Proc. 189, Pittsburgh, PA, 1991)pp. 267272.Google Scholar
[5] Hirao, K., Tsuge, A., Brito, M. E. and Kanzaki, S., J. Ceram. Soc. Jpn., 101[9], 1071–1073(1993).Google Scholar
[6] Saji, T., New Ceramics, 8, No.5, 21–30(1995), in Japanese.Google Scholar
[7] Wötting, G., Kanka, B. and Ziegler, G., Non-Oxide Technical and Engineering Ceramics, edited by Hampshire, S.(Elsevier, London, 1986), pp.8396.Google Scholar
[8] Mitomo, M., Tsutsumi, M., Tanaka, H., Uenosono, S. and Saito, F., J. Am. Ceram. Soc., 73[8], 24412445(1990).Google Scholar