Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T04:05:11.282Z Has data issue: false hasContentIssue false

Grain Boundary Weak Links in High-TC Superconductors

Published online by Cambridge University Press:  26 February 2011

Donglu Shi
Affiliation:
Argonne National Laboratory, Argonne, IL 60439
S. Sengupta
Affiliation:
Argonne National Laboratory, Argonne, IL 60439
K. C. Goretta
Affiliation:
Argonne National Laboratory, Argonne, IL 60439
S. Salem-Sugui Jr
Affiliation:
Argonne National Laboratory, Argonne, IL 60439
M. Smith
Affiliation:
Department of Physics, Western Illinois University, Macomb, IL 61455
Y. N. Lwin
Affiliation:
Department of Physics, Western Illinois University, Macomb, IL 61455
Get access

Abstract

The transport critical current density (Jc) for high-Tc thin films, bicrystals, and bulk ceramics is shown to be determined by magnetic field penetration into the grain boundaries. The gross grain orientations may not in all cases be an important factor in determining this penetration. The parameter (λG/λj)2can characterize the strength of the grain boundary coupling, which depends mainly on the crystal coherence and connectivity at the boundary area.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shi, D., Capone, D. W. II, Goudey, G. T., Singh, J. P., Zaluzec, N. J., and Goretta, K. C., Mater. Lett. 6, 217 (1988).Google Scholar
1. Peterson, R. L. and Ekin, J. W., Physica C 152, 325 (1989).Google Scholar
2. Stephens, R. B., Cryogenics 29, 399 (1989).Google Scholar
3. Shi, D., Chen, J. G., Xu, M, Cornelius, A. L., Balachandran, U., and Goretta, K. C., Supercond. Sci. Technol. 3, 222 (1990).Google Scholar
4. Dimos, D., Chaudhari, P., Mannhart, J., and LeGoues, F. K., Phys. Rev. Lett. 61, 219 (1988).Google Scholar
5. Babcock, S. E., Cai, X. Y., Kaiser, D. L., and Larbalestier, D. C., Nature 347, 167 (1990).Google Scholar
6. Van Duzer, T. and Turner, C. W., “Principles of Superconductive Devices and Circuits” (Elsevier North Holland, Amsterdam, 1981) p. 139.Google Scholar
7. Hylton, T. L. and Beasley, M. R., Phys. Rev. B. 39, 9042 (1989).Google Scholar
8. Shi, D., Krishnan, H., Hong, J. M., Miller, D., McGinn, P. J., Chen, W. H., Xu, M., Chen, J. G., Fang, M. M., Welp, U., Lanagan, M. T., Goretta, K. C., Dusek, J. T., Picciolo, J. J., and Balachandran, U., J. Appl. Phys. 68, 228 (1990).Google Scholar
9. Shi, D., Chen, J. G., Xu, M., Cornelius, A. L., Balachandran, U., and Goretta, K. C., Supercond. Sci. Technol. 3, 222 (1990).Google Scholar
10. Shi, D., Fang, M. M., Akuiieze, J., Xu, M., Chen, J. G., and Segre, C., Appl. Phys. Lett. 57, 2606 (1990).Google Scholar
11. Shewmon, P. G., in “Physical Metallurgy,” ed. Chalmers, B. (John Wiley and Sons, New York, 1959) p. 110.Google Scholar
12. Murakami, M., Morita, M., and Koyama, N., Jpn. J. Appl. Phys. 28, L1754 (1989).Google Scholar
13. Jin, S., Tiefel, T. H., Sherwood, R. C., Davis, M. E., Van Dover, R. B., Kammlott, G. W., Fastnacht, R. A., and Keith, H. D., Appl. Phys. Lett. 52, 2074 (1988).Google Scholar
14. McGinn, P. J., Black, M., and Valenzuela, A., Physica C 156, 57 (1988).Google Scholar
15. Zhu, Y., Zhang, H., Wang, H., and Suenaga, M., preprint (1991).Google Scholar
16. Gao, Y., Bai, G., Lam, D. J., and Merkle, K. L., Physica C 173, 487 (1991).Google Scholar
17. Shi, D., Xu, M., Umezawa, A., and Fox, R. F., Phys. Rev. B 42, 2062 (1990).Google Scholar